Меню
Поиск



рефераты скачать Аналитическая криминология

Откуда стандартная ошибка параметра а:

=190732 (немного отличается от рассчитанного программой Excel (195686) в связи с ошибками округления;

стандартная ошибка параметра b:

=1,4

(отличается от рассчитанного программой Excel (0,07) в связи с ошибками округления;

стандартная ошибка коэффициента корреляции r:

==0,987.


Стандартные ошибки для коэффициента регрессии и свободного члена вычисляются, чтобы: 1) оценить их статистическую значимость по t-критерию; 2) построить соответствующие доверительные интервалы для параметров уравнения.

Доверительный интервал для коэффициента регрессии показывает, в каких пределах может находиться данный коэффициент в генеральной совокупности: от b-tmb до b+tmb. Доверительный интервал для свободного члена показывает, в каких пределах может находиться данный коэффициент в генеральной совокупности: от а-tmа до а+tmа. t-статистика для коэффициента регрессии рассчитывается по формуле: tb=b/mb, значение которой сравнивается с табличным критерием; t-статистика для свободного члена рассчитывается по формуле: ta=а/mа, значение которой сравнивается с табличным критерием; t-статистика для коэффициента корреляции рассчитывается по формуле: tr=r/mr, значение которой сравнивается с табличным. На основании t-статистик делается вывод о том, значимо ли отличаются от нуля полученные коэффициенты. В нашем случае табличное t берется с 18 (N-2) степенями свободы (df=18) при уровне значимости α=0,05 и составляет 2,1.

ta=а/mа=563058/195686=2,877;

tb=b/mb=0,28656548/0,074153151=3,864;

tr=r/mr=0,673393962/0,987=0,682.

Как видно стандартные ошибки для коэффициента регрессии и свободного члена больше табличного, что говорит о их статистической значимости, в то время как стандартная ошибка для коэффициента корреляции меньше табличного значения, что указывает на обратное – статистическую не значимость коэффициента корреляции.

7) Вычисляем коэффициент корреляции и возводим его в квадрат, чтобы получить коэффициент детерминации;

ryx=b∙=0,2866∙=0,67347.

Возводим коэффициент корреляции в квадрат и получаем коэффициент детерминации:

R2=0,673472=0,45.

8). Средняя ошибка аппроксимации[90]:

=14,6%

показывает не достаточно хорошее соответствие теоретических () и фактических (y) значений, поскольку хорошая аппроксимация находится в пределах 7-10%.

9). Зная факторную и остаточную дисперсии на одну степень свободы, находим F-критерий Фишера: F=. Это значение сравнивается с табличным. Fфактическое=7,18305Е+11/48097291434=14,934. Fтабличное для уровня значимости α=0,05 и числе степеней свободы: k1=1, k2=18 составляет 4,41. Сравнив  Fтабличное и Fфактическое, отклоняем гипотезу H0 о том, что уравнение регрессии и коэффициент детерминации не имеют статистической значимости (фактически равны нулю), поскольку фактическое значение больше табличного.  F-критерий Фишера проверяет гипотезу о статистической значимости уравнения регрессии в целом (1) и R2 (2). В нашем случае с вероятностью 1-α=0,95 (95%) можно утверждать, что уравнение регрессии и коэффициент детерминации статистически значимы.

=; =; =.

11). Эластичность функции игрек по икс вычисляется по формуле:

Эyх=∙, где - первая производная функции. Следовательно, для линейной функции =b, и тогда получаем: Эyх=∙=b∙= b ∙. Видно, что коэффициент эластичности для линейной функции является переменной величиной, зависящей от значений икс. В этой связи, как правило, вычисляют средний коэффициент эластичности:  Эyх= b ∙. Для нашего случая:

Эyх= b ∙=0,2866 ∙ 2554742/1295158=0,565.

Интерпретация коэффициента эластичности: эластичность безразмерная величина и её значения не зависят от того, в каких единицах измерены переменные, что создает значительные удобства для использования данного коэффициента[91]. Коэффициент эластичности показывает процентное изменение функции (следствия) при изменении аргумента (причины) на 1 процент. В нашем случае, если число регистрируемых преступлений изменится (возрастет или снизится) на 1%, то число выявленных лиц изменится на 0,565%.  Реагирование зависимой переменной на изменение независимой является неэластичным (менее единицы).

12) оценим без использования (точечная оценка) и с использованием доверительных интервалов (интервальная оценка), какое число лиц будет выявлено в случае, если число зарегистрированных преступлений составит величину равную 4500000.

Точечный прогноз числа выявленных лиц, совершивших преступления для числа совершенных преступлений равного 4500000 рассчитывается по регрессионному уравнению, где вместо икс ставится число 4500000:

y=563058+0,28656548∙4500000=1852602 человека.

Очевидно, что точечный прогноз нереалистичен и следует ввести доверительный интервал, в пределах которого будет варьировать ожидаемое число выявленных лиц, совершивших преступления при уровне преступности равном 4,5 миллиона преступлений. Реальное значение прогнозируемой величины будет находиться в пределах заданного интервала с 95-ю или 99-ю процентами уверенности в зависимости от величины доверительного интервала. Если мы хотим повысить точность прогнозного значения, то есть уменьшить величину ошибки, например, с 5% до 1%, то должны увеличить ширину доверительного интервала.

Прогнозное значение:  плюс/минус стандартная ошибка теоретического значения игрек: ,

=219310,968∙=49040.

Таким образом, число выявленных лиц, совершивших преступления, при абсолютном уровне преступности равном 4,5 миллиона преступлений может варьировать с 95% уверенностью в пределах 1852602 человека плюс-минус 49040 человек, то есть от 1803562 до 1901642  человек. Подобные прогнозные данные могут быть полезны для планирования числа мест в изоляторах временного содержания (ИВС) и следственных изоляторах (СИЗО), исправительных колониях (с учетом доли лиц, осуждаемых к лишению свободы), планирования численности сотрудников правоохранительных, пенитенциарных учреждений и решения других практических вопросов.

ОБЩИЙ ВЫВОД:  результаты проведенного исследования не противоречат утверждению о том, что между числом выявленных лиц и числом зарегистрированных преступлений существует умеренная положительная линейная  корреляционная связь, позволяющая как объяснять, так и прогнозировать число выявленных лиц, совершивших преступления с помощью полученного уравнения. Объяснительная сила установленной зависимости зиждется на том основании, что рост числа, совершаемых преступлений, как правило, осуществляется экстенсивным, а не интенсивным путем, тот есть за счет появления новых преступников[92]. Нулевая гипотеза отвергается и принимается альтернативная (исследовательская гипотеза). Определенную тревогу вызывает коэффициент корреляции, который является статистически незначимым (при проверке по t-критерию), а также  средняя ошибка аппроксимации (14,6%). В то же время, во-первых, параметры уравнения являются статистически значимыми, что показывает соответствующая t-статистика; во-вторых, F-критерий Фишера проверяющий гипотезу о статистической значимости уравнения регрессии в целом (1) и R2 (2) в нашем случае с вероятностью 1-α=0,95 (95%) показывает, что уравнение регрессии и коэффициент детерминации статистически значимы.

ЗАДАЧИ  ДЛЯ  САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задача №1.

Постановка задачи: интуитивно очевидно, что число выявленных лиц, совершивших преступления должно положительно влиять на число лиц, осужденных за совершение преступлений.

Дано:

Таблица.

Годы

Выявлено лиц, совершивших преступления, чел.

Осужденные, чел.

1987

969338

580074

1988

834673

427039

1989

847577

436988

1990

897229

537643

1991

956258

593823

1992

1148962

661392

1993

1262735

792410

1994

1441562

924754

1995

1595501

1035807

1996

1618394

1111097

1997

1372161

1013431

1998

1481503

1071051

1999

1716679

1223255

2000

1741439

1183631

2001

1644242

1244211

2002

1257700

859318

2003

1236733

773920

2004

1222504

793918

2005

1297123

878893



Требуется: 1) сформулировать нулевую и альтернативную гипотезы; 2) провести спецификацию модели; 3) сделать таблицу данных; 4) построить график зависимости между переменными модели; 5) Вычислить параметры уравнения; 6) оценить статистическую значимость параметров уравнения; 7) измерить коэффициент детерминации и дать его интерпретацию; 8)оценить статистическую значимость коэффициента детерминации; 9) оценить качество полученного регрессионного уравнения в целом с использованием средней ошибки аппроксимации; 10) оценить качество регрессионного уравнения с помощью F-критерия Фишера; 11) измерить эластичность числа выявленных лиц, совершивших преступления по числу совершенных преступлений и дать интерпретацию полученному коэффициенту эластичности; 12) сделать точечный и интервальный прогноз числа осужденных при числе выявленных лиц равном 1852602 человека.


ФАКУЛЬТАТИВНЫЙ МАТЕРИАЛ:

Тема №. 6-1. Исследование зависимостей между характером и степенью общественной опасности преступлений и уровнем их раскрываемости, а также частотой совершения преступлений и уровнем их раскрытия

План лекции:

1. Исследование зависимостей между характером и степенью общественной опасности преступлений и уровнем их раскрываемости.

2. Исследование зависимостей между частотой совершения преступлений и уровнем их раскрытия.


Содержание лекции:

1. Исследование зависимостей между характером и степенью общественной опасности преступлений и уровнем их раскрываемости.

Цель данного параграфа в том, чтобы проверить гипотезы о наличии и направлении связей между соответствующими переменными, построить конкретные объяснительные и прогнозные криминологические модели. То есть, во-первых, в строгой математической форме установить величину и направление связи между переменными «характер и степень общественной опасности преступлений» и «уровнем их раскрываемости»; во-вторых, исследуя первую зависимость, перейти к изучению величины и направления связи между переменными «частота совершения преступлений» и «уровень их раскрытия». Для этого будут применены методы параметрического корреляционного и регрессионного анализа, позволяющие измерить силу связи между переменными, а также получены соответствующие регрессионные уравнения, дающие ответ на вопрос, на сколько в абсолютном выражении изменится результативная (зависимая, объясняемая, управляемая, эндогенная) переменная при изменении факторной (объясняющей, управляющей, независимой, экзогенной) переменной на единицу измерения.

 В теории и на практике существует очевидный интерес выяснить, каким образом связаны между собой тяжесть совершенных преступлений и уровень их раскрываемости? Данный вопрос актуален как для представителей правоохранительных органов, так и граждан, но, как ни странно, поставлен в научной плоскости впервые. Если задать его непрофессионалам, слегка разъяснив или напомнив им, суть математических зависимостей, то ответы будут заметно различаться. Кто-то сочтет зависимость положительной, мотивировав это тем, что тяжким преступлениям нужно уделять большее внимание. Кто-то, напротив, укажет на отрицательный характер связи между переменными, поскольку тяжкие преступления потому и тяжкие, что их труднее раскрыть. Задав аналогичный вопрос сведущим сотрудникам правоохранительных органов, мы получим, по всей видимости, ответ о положительной связи, основанный на знании статистических показателей или простом опыте работы. Однако они не смогут даже приблизительно оценить силу связи между переменными и, тем паче, назвать примерную величину реакции результативной переменной (раскрываемость) при изменении факторной (характер и степень общественной опасности), не говоря уже о других более тонких нюансах, нуждающихся в выяснении при ответе на данный внешне простой вопрос.  

Прежде чем приступить к непосредственному изучению зависимости  между характером и степенью общественной опасности преступлений, с одной стороны, и уровнем их раскрываемости, с другой, позволю себе сделать небольшое отступление полезное с точки зрения уяснения смысла последующей модели.

В сентябре 1986 года я приступил к исполнению обязанностей следователя в Первомайском РОВД УВД Курганского облисполкома после окончания Тюменского факультета Омской высшей школы милиции МВД СССР. Практика впечатляла разбросом дел - от «мелочевки» до вполне серьезных, но при этом по любому уголовному делу, даже если по нему не было установлено лица подозреваемого в совершении, и оно было явно незначительным по своим характеру и степени общественной опасности, часто совершенно бесперспективным[93], до приостановления уголовного дела требовалось выполнить ряд следственных и иных процессуальных действий, что в значительной мере снижало эффективность следственного труда по другим более значимым и перспективным делам. Еще в большей степени снижалась эффективность работы оперативных уполномоченных, которые «утопали в море мелких дел» при наличии более серьезных[94], и которым следовало бы уделить должное внимание. Суть в том, что в уголовном процессе чем-то подобно физике и экономике действуют законы сохранения. Если вы затратили силы и время на дело «А», то на дело «Б» у вас осталось сил и времени ровно столько, сколько осталось за вычетом энергии и времени, затраченных на дело «А». Более того, мы сюда должны заложить еще и фактор усталости. Ведь человек не робот, и имеет обыкновение уставать. Если утром со свежими силами он работал по делу «А», то вечером, работая по делу «Б», он трудится уже менее сосредоточенно и активно. То есть величина вычитаемого возрастает еще и за счет усталости. Так устроен наш организм. Но в правоохранительных органах витала мысль М.С.Строговича о том, что «мелких дел» не бывает, и каждому следует уделять достойное внимание, хотя и в то время преступления дифференцировались по характеру и степени общественной опасности, имела место дифференциация процессуальной формы, что отражалось на подследственности и объемах  процессуальных работ. Более того, в сознании оперативных и следственных работников, как, впрочем, и простых граждан, в явном и неявном виде имело место разграничение более и менее важных дел, которым следует уделять соответствующее внимание, что вероятно нашло полноценное отражение в конкретных статистических закономерностях.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.