|
Цикловые кинематические (геометрические) диаграммы для кулисного механизма (рис. 3.6). Циклом называется период времени или изменения обобщенной координаты по истечении, которого все параметры системы принимают первоначальные значения. Поэтому значения величин в начале и в конце цикла одинаковы. 1.2. Метод центроид (зубчатые передачи) рис. 3.7
Центроидой (полоидой) называется геометрическое место центров (полюсов) относительного вращения в системах координат связанных со звеньями механизма. В зубчатом механизме при передаче движения центроиды колес перекатываются друг по другу без скольжения. Повернем ведущее колесо на малый угол d1, тогда ведомое колесо повернется на угол dТак как центроиды или начальные окружности колес перекатываются друг по другу без скольжения, то дуга dSw1 будет равна дуге dSw2. Тогда можно записать следующее равенство , где dSw1 = rw1 × d dSw2 = rw2 × d Откуда i 21 = d2/d1 = rw1/rw2 = const. Функция положения для выходного звена зубчатой передачи d2= i 21 × d1 , откуда .
Вторая передаточная функция для выходногозвена зубчатой передачи q2 = d i21/d
Механизм зубчатой передачи не является цикловым механизмом, так как угловое перемещение выходного звена увеличивается при увеличении углового перемещения входного. Поэтому кинематические диаграммы принято строить для одного оборота входного звена (рис 3.8). Диаграммы функции положения и передаточных функций для зубчатой передачи.
Графические методы кинематического анализа Метод планов (рассмотрим на примере кривошипно-ползунного механизма): Построение кинематических схем (планов положений): Основная задача построения кинематических схем, заключается в том, чтобы изобразить на бумаге схему, дающую представление о кинематических и геометрических зависимостях отдельных звеньев механизма. Для этого нет необходимости изображать механизм отображая сложные конструктивные формы, достаточно изображение механизма в виде простейших линий, учитывая, что он составлен из жестких неизменяемых звеньев. Кинематические схемы выполняются в масштабе (масштабном коэффициенте):
Построенный ряд последовательных планов положений механизма позволяет получить траектории движения точек звеньев механизма, а также их перемещения, рассмотрим последовательность построений для кривошипно-ползунного механизма (рис. 3.9, а). Разметка траекторий движения всех звеньев механизма осуществляется методом засечек. С этой целью угол поворота кривошипа разбивается 12 равных частей, и строятся текущие положения кривошипа О1Аi (за начало отсчета удобней принять внешнее предельное положение кривошипа и шатуна соответствующее нижней мертвой точке ползуна). Из полученных точек Аi циркулем, расстояние, между ножками которого равно длине шатуна АВ в масштабе построения, делаются засечки на траектории движения ползуна (прямая ХХ), т.е. получаем текущие положения ползуна (точка Вi), соединив которые с соответствующими точками Аi, получают промежуточные положения шатуна. На плане положений механизма определяем текущие положения центров тяжести кривошипа и шатуна (точки S1 и S2). Текущие значения перемещений ползуна можно определить из плана положений механизма, как расстояние от крайнего нижнего положения ползуна (точка В0) до текущего положения (точки Вi) умноженное на масштаб построений. Построение плана скоростей: Построение планов скоростей и ускорений ведется в порядке присоединения групп Ассура к начальному механизму. Поскольку кривошипно-ползунный механизм имеет одну степень подвижности, то заданное движение входного звена (в данном случае кривошипа О1А) определяет движение всех остальных звеньев. Т.к. звено О1А совершает вращательное движение, то траекторией точки А является окружность с центром в точке О1. Вектор скорости точки А направлен по касательной к траектории движения, т.е. перпендикулярно радиусу О1А, в сторону вращения кривошипа. Величина скорости определяется из выражения: , где wкр .- угловая скорость кривошипа, рад/с; r – радиус кривошипа, м. Известный по величине и направлению вектор скорости `uА строят в виде отрезка произвольной длины рuа, из выбранного полюса рu - плана скоростей (рис. 3.9, б). В этом случае масштаб плана скоростей: , . При определении скорости точки В следует отметить, что ползун совершает возвратно-поступательное движение, т.е. траекторией его движения является прямая линия, а вектор её скорости направлен параллельно линии перемещения. Т.к. точка В одновременно принадлежит и ползуну, и шатуну, то для дальнейшего построения плана скоростей следует воспользоваться векторным уравнением, выражающим связь между скоростями точек А и В шатуна: , где – вектор абсолютной скорости точки В; – вектор скорости переносного движения, скорости полюса в качестве которого принята точка А; – вектор относительной скорости точки В по отношению к точке А (вектор вращательной скорости точки В вокруг полюса – точки А). Внимание: чтобы отложить любой вектор нужно знать его величину и направление, поэтому, здесь, и далее вектор, известный по величине и направлению, подчеркнут двумя линиями, а вектор известный только по направлению, подчеркнут одной линией. Рис. 3.9 В векторном равенстве две неизвестные величины: скорость uВ и относительная (вращательная) скорость uВА. Вектор абсолютной скорости направлен параллельно линии перемещения ползуна ХХ, а вектор относительной скорости – перпендикулярно радиусу вращения, т.е. перпендикулярно текущему положению шатуна АВ. Вектор переносной скорости (скорости полюса) на плане скоростей представлен отрезком рuа, поэтому данное векторное равенство можно решить графическим путем. Через точку а вектора рuа проводят линию действия скорости uВА перпендикулярно АВ. Далее, в соответствии с векторным уравнением, через полюс плана скоростей рu проводят линию действия скорости uВ параллельно линии ХХ перемещения ползуна. На пересечении линий действия скоростей uВА и uВ находим точку в, расстояние от которой до полюса плана в масштабе и определяет величины скоростей, м/с: ; . Зная относительную скорость точки В вокруг полюса точки А, можно определить угловую скорость шатуна, рад/с: , где uВА - м/с; l – длина шатуна, м. Теорема подобия фигур для планов скоростей: фигуры на плане положений и на плане скоростей образованные векторами относительных скоростей подобны. Рассмотрим треугольники на плане положений D01АВ и на плане скоростей Dрuав, они являются подобными как имеющими две стороны взаимно перпендикулярные друг другу и одну параллельную. Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 |
Новости |
Мои настройки |
|
© 2009 Все права защищены.