|
Для определения величины сосредоточенных масс распределим массы звеньев по методу замещающих масс, сосредоточив их в центрах шарниров A,B,C. Тогда m1 = mA1 + mB1 - масса первого звена, распределенная между массами, сосредоточенными в точках В; m2 = mВ2 + mС2 - масса второго звена, распределенная между массами, сосредоточенными в точках В и С . Вначале проведем уравновешивание массы mC корректирующей массой mk2. Составим уравнение статических моментов относительно точки В для звеньев 2 и 3: . Задаемся величиной lk2 и получаем корректирующую массу: . Затем уравновешиваем массы центра, который после установки корректирующей массы расположился в точке В: . Составляем уравнение статических моментов относительно точки А: . Задаемся величиной lk1 и получаем корректирующую массу: .
Частичное статическое уравновешивание кривошипно-ползунного механизма
1. Уравновешивание вертикальной составляющей главного вектора сил инерции (рис. 14.5). Дано: lAB, lBC, lAS1, lBS2, lCS3=0, m1, m2, m3. Определить: mk1 В этом случае необходимо добиться, чтобы центр масс механизма Sм при движении перемещался вдоль направляющей ползуна (для схемы на рис. 14.5 по горизонтали). Для этого достаточно уравновесить только массу mB. Составляем уравнение статических моментов относительно точки А: . Задаемся величиной lk1 и получаем корректирующую массу: .
2. Уравновешивание горизонтальной составляющей главного вектора сил инерции.
Дано: lAB, lBC, lAS1, lBS2, lCS3=0, m1, m2, m3. Определить: mk1 В этом случае необходимо добиться, чтобы центр масс механизма при движении перемещался по дуге окружности радиуса (рис. 14.6). Расчет корректирующей массы ведется в два этапа. В начале первой составляющей корректирующей массы уравновешивается масса mB. Составляется, как и в предыдущем примере, уравнение статических моментов относительно точки А: . Задается величина lk1 и рассчитывается корректирующая масса: . Затем с помощью второй составляющей корректирующей массы центр массы mС. перемещается в точку . Величина определяется следующим образом: центр шарнира С соединяется прямой с концом отрезка lk1 точкой Sk. Радиус проводится параллельно отрезку BС. Тогда, подобен и . Статический момент относительно точки : , . Радиус-вектор определяется из пропорций соответствующих сторон треугольников: , , откуда . Корректирующая масса, обеспечивающая уравновешивание горизонтальной составляющей главного вектора сил инерции кривошипно-ползунного механизма, размещается на первом звене механизма и равна сумме составляющих: . Центр массы механизма при таком уравновешивании расположен в точке Sм, которая движется по дуге радиуса rSм: .
Схема распределения масс в механизме после уравновешивания дана на рис. 14.7.
Балансировка роторов Общие сведения о балансировке. Ротор, неуравновешенность ротора и ее виды. Задачи балансировки Ротором называют звенья механизмов, совершающие вращательное движение и удерживаемые при этом своими несущими поверхностями в опорах. Если масса ротора распределена относительно оси вращения равномерно, то главная центральная ось инерции x-x совпадает с осью вращения и ротор является уравновешенным или идеальным. При несовпадении оси вращения с осью x-x, ротор будет неуравновешенным и в его опорах при вращении возникнут переменные реакции, вызванные действием инерционных сил и моментов сил (точнее, движением центра масс с ускорением). В зависимости от взаимного расположения оси вращения и главной центральной оси инерции x-x , различают следующие виды неуравновешенности роторов (рис. 14.8): - статическую, когда эти оси параллельны (рис. 14. 8, а); - моментную, когда оси пересекаются в центре масс ротора S (рис. 14. 8, б); - динамическую, когда оси либо пересекаются вне центра масс, либо не пересекаются, а перекрещиваются в пространстве (рис. 14. 8, в).
Неуравновешенность определяется конструктивными характеристиками ротора или механизма и не зависит от параметров движения. Поэтому при балансировке оперируют не инерционными силами, а дисбалансами. Дисбаланс - мера статической неуравновешенности ротора, векторная величина, равная произведению неуравновешенной массы m на ее эксцентриситет e, где эксцентриситет e - радиус-вектор центра этой массы относительно оси ротора. Направление главного вектора дисбаланса D совпадает с направлением главного вектора сил инерции Ри, действующих на ротор при вращении: . Моментная неуравновешенность характеризуется главным моментом дисбалансов ротора MD , который пропорционален главному моменту сил инерции (рис. 14.9): . Главный момент дисбалансов ротора полностью определяется моментом пары равных по величине и противоположных по направлению дисбалансов DM1 + DM2 = DM, расположенных в двух произвольных плоскостях (I и II), перпендикулярных оси вращения ротора. Дисбаланс и момент дисбалансов не зависят от частоты вращения, они полностью определяются конструкцией ротора и точностью его изготовления. Балансировкой называют процесс определения значений и угловых координат дисбалансов ротора и их уменьшения с помощью корректировки размещения его масс. Балансировка эквивалентна уравновешиванию системы инерционных сил, прикладываемых к подвижному ротору для его равновесия.
Данную систему, как и любую произвольную систему сил, можно заменить равнодействующими - главным вектором и главным моментом или двумя векторами, расположенными в произвольных параллельных плоскостях. Для уравновешивания системы сил достаточно уравновесить эти равнодействующие. При балансировке операции над силами заменяют действиями над дисбалансами. Поэтому для жестких роторов вышесказанное можно сформулировать так: жесткий ротор можно уравновесить двумя корректирующими массами, расположенными в двух произвольно выбранных плоскостях, перпендикулярных оси его вращения. Эти плоскости называют плоскостями коррекции. Задача балансировки ротора заключается в определении, в выбранных плоскостях коррекции, значений и углов дисбалансов и размещении в этих плоскостях корректирующих масс, дисбалансы которых равны по величине и противоположны по направлению найденным дисбалансам ротора. На практике балансировку проводят: при конструировании - расчетными методами, в процессе изготовления деталей и узлов - экспериментально на специальных балансировочных станках. Балансировка на станках является более точным и надежным методом, по сравнению с расчетными. Поэтому она применяется для ответственных деталей с высокими рабочими частотами вращения. Корректировка масс ротора осуществляется либо присоединением к нему дополнительных корректирующих масс (наплавлением, наваркой или привинчиванием противовесов), либо удалением части массы ротора с «тяжелой» стороны (фрезерованием или высверливанием). Точность балансировки характеризуется величиной остаточного дисбаланса D0 ротора в каждой из плоскостей коррекции. Величина D0 не должна превышать допустимых для данного класса точности значений, регламентируемых ГОСТ. Балансировка роторов при различных видах неуравновешенности Статическая неуравновешенность
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 |
Новости |
Мои настройки |
|
© 2009 Все права защищены.