Меню
Поиск



рефераты скачать Теория машин и механизмов

·     высшие, в которых контакт звеньев осуществляется по линиям или точкам (пары, допускающие скольжение с перекатыванием).

Два твердых тела (звена), соприкасающиеся своими поверхностями и имеющие возможность двигаться относительно друг друга, образуют кинематическую пару. Кинематическая пара допускает не любое движение звеньев относительно друг друга, а только такое движение, которое согласуется с характером соприкосновения и с формой соприкасающихся поверхностей.

Если звенья, образующие КП, в силу характера их соприкосновения, могут совершать только простейшие движения относительно друг друга (вращательное, прямолинейное поступательное или, в общем случае, винтовое), то пара является низшей. Низшая пара - пара, в которой требуемое относительное движение звеньев обеспечивается соприкасанием ее элементов по плоскости или поверхности. В таких парах движение одного звена относительно другого представляет собой чистое скольжение.

Более сложные относительные движения можно реализовать в парах, характер соприкасания звеньев в которых допускает не только относительное скольжение, но и перекатывание. Такие пары называются высшими. Высшая пара - пара, в которой требуемое относительное движение звеньев может быть получено только соприкасанием звеньев по линиям или в точках.

3.   по относительному движению звеньев, образующих пару:

·     вращательные;

·     поступательные;

·     винтовые;

·     плоские;

·     сферические.

4.   по способу замыкания (обеспечения контакта звеньев пары):

·     силовое (за счет действия сил веса или силы упругости пружины, рис. 1.10);

·     геометрическое (за счет конструкции рабочих поверхностей пары, рис. 1.11).

 


      2

 


                        В                  3

                   К  

    1                                              0

 


                    01

 


      0

 



                2                        1

 


             В,С


        3                                01

 


       03

                                 0


Рис. 1.10                                      Рис. 1.11


Кинематические пары в плоских механизмах


Плоскими называют механизмы, точки звеньев которых движутся в одной плоскости либо в параллельных плоскостях.

В плоских механизмах могут существовать только кинематические пары 4 и 5 классов (т.е. двух и одно подвижные), причём кинематические пары 4 класса будут высшими, а 5 низшими (табл. 1.1). Например, механизм на рис. 1.12 является плоским, имеет две низших вращательных кинематических пары 5 класса 01 и 02 и одну высшую 4 класса А (разрешает качение и скольжение колеса 1 по 2).

Рис. 1.12


Краткая историческая справка


Как самостоятельная научная дисциплина ТММ, подобно другим прикладным разделам науки, возникла в результате промышленной революции начало которой относится к 30-м годам XVIII века. Однако машины существовали задолго до этой даты. Поэтому в истории развития ТММ можно условно выделить четыре периода:

1-й период до начала XIX века - период эмпирического машиностроения в течение которого изобретается большое количество простых машин и механизмов: подъемники, мельницы, камнедробилки, ткацкие и токарные станки, паровые машины (Леонардо да Винчи, Вейст, Ползунов, Уатт). Одновременно закладываются и основы теории: теорема об изменении кинетической энергии и механической работы, «золотое правило механики», законы трения, понятие о передаточном отношении, основы геометрической теории циклоидального и эвольвентного зацепления (Карно, Кулон, Амонтон, Кадано Дж., Ремер, Эйлер).

2-й период от начала до середины XIX века - период начала развития ТММ. В это время разрабатываются такие разделы как кинематическая геометрия механизмов (Савари, Шаль, Оливье), кинетостатика (Кариолис), расчет маховика (Понселе), классификация  механизмов по функции преобразования движения (Монж, Лану) и другие разделы. Пишутся первые научные монографии по механике машин (Виллис, Бориньи), читаются первые курсы лекций по ТММ и издаются первые учебники (Бетанкур, Чижов, Вейсбах).

3-й период от второй половины XIX века до начала XX века - период фундаментального развития ТММ. За этот период разработаны: основы структурной теории (Чебышев, Грюблер, Сомов, Малышев), основы теории регулирования машин (Вышнеградский), основы теории гидродинамической смазки (Грюблер), основы аналитической теории зацепления (Оливье, Гохман), основы графоаналитической динамики (Виттенбауэр, Мерцалов), структурная классификация и структурный анализ (Ассур), метод планов скоростей и ускорений (Мор, Манке), правило проворачиваемости механизма (Грасгоф) и многие другие разделы ТММ.

4-й период от начала XX века до настоящего времени - период интенсивного развития всех направлений ТММ как в России, так и за рубежом. Среди русских ученых необходимо отметить обобщающие работы Артоболевского И.И., Левитского Н.И., Фролова К.В.; в области структуры механизмов - работы Малышева А.П., Решетова Л.Н., Озола О.Г.; по кинематике механизмов - работы Колчина Н.И., Смирнова Л.П., Зиновьева В.А.; по геометрии зубчатых передач - работы Литвина Ф.Л., Кетова Х.Ф., Гавриленко В.А., Новикова М.Л.; по динамике машин и механизмов - Горячкин В.П., Кожевников С.Н., Коловский М.З. и др. Данное перечисление не охватывает и малой доли работ выдающихся ученых, внесших существенный вклад в развитие ТММ в этот период. Из зарубежных ученых необходимо отметить работы Альта Х., Бегельзака Г., Бейера Р., Крауса Р., Кросли Ф. и многих других.


Контрольные вопросы

1.                Что называют машиной и как их классифицируют?

2.                из чего состоит машинный агрегат?

3.                Что называют механизмом?

4.                Для чего предназначены механизмы?

5.                 Что называют звеном?

6.                В чем отличие входного звена от выходного?

7.                Что называют кинематической парой?

8.                Чему равен класс кинематической пары?

9.                Какие кинематические пары называют низшими и высшими?

10.            Для чего предназначена структурная схема механизма?

11.            Какие кинематические пары могут существовать в плоских механизмах?


Лекция 2

Структурные формулы механизмов. Пассивные звенья и кинематические пары. Классификация механизмов. Образование механизмов по Л.В. Ассуру. Структурный анализ механизмов. Замена в плоских механизмах высших пар низшими.


Структурные формулы механизмов


Звенья соединённые кинематическими парами образуют кинематическую цепь. Если в замкнутой кинематической цепи одно из звеньев сделать неподвижным, цепь образует механизм. Итак, механизм представляет собой замкнутую кинематическую цепь с одним неподвижным звеном (стойкой) (определение механизма согласно Рело).

Свободное тело относительно пространственной системы координат имеет 6 степеней свободы. Положение этого тела соответственно можно задать 6-ю независимыми параметрами, называемыми обобщенными координатами.

Рассмотрим кинематическую цепь, состоящую из «n» - звеньев, образующих: «р5» - число кинематических пар 5-го класса, «р4» - 4-го, «р3» - 3-го, «р2» - 2-го, «р1» - 1-го. «6×n» - число степеней свободы не соединённых между собой звеньев. Так как стойка неподвижное звено, исключаем её «6×(n-1)». Каждая кинематическая пара 5-го класса накладывает 5 ограничений на относительные движения соединяемых звеньев, общее число ограничений кинематических пар 5-го класса в механизме «5×р5». Рассуждая аналогично - общее число ограничений кинематических пар 4-го класса «4×р4», 3-го класса «3×р3», 2-го класса «2×р2», 1-го класса «1×р1».

Следовательно, число степеней свободы кинематической цепи относительно неподвижного звена, с которым связана пространственная система координат, определяется по формуле Сомова П.О., Малышева А.П.

W = 6·(n - 1) - p5 - p4 - p3 - p2- p1,

где W -степень подвижности механизма (число обобщенных координат которые нужно задать для определимости положения всех его звеньев); n - число звеньев механизма, включая стойку (пассивные звенья не учитываются).

Для плоского механизма используют формулу Чебышева П.Л.

W = 3·(n - 1) - p5 - p4 ,

Степень подвижности механизма определяет число ведущих звеньев его, т.е. количество звеньев, которым необходимо задать движение, чтобы все остальные звенья двигались по вполне определенным законам.

Звенья которым приписывают обобщенные координаты называют начальными.

Для механизмов определяются входные и выходные звенья: входное – звено, которому сообщается движение, которое преобразует механизм. Выходное звено – звено совершающее движение, для получения которого и предназначен механизм.

Пример. Определить степень подвижности кривошипно-ползунного механизма, представленного на рис. 2.1.

Рис. 2.1.

Решение. Кривошипно-ползунный механизм - плоский, четырехзвенный (n = 4):

звено 0 - стойка; звено 1 - кривошип, совершает вращательное движение; звено 2 - шатун, совершает сложное плоскопараллельное движение (поступательное и вращательное); звено 3 (выходное) - ползун, совершает возвратно-поступательное движение.

Стойка принята за нулевое звено. Звенья соединены между собой четырьмя кинематическими парами 5 класса (на структурной схеме они обозначены буквами латинского алфавита). Характеристику кинематических пар приводим в табл. 2.1.

Определяем степень подвижности механизма по формуле Чебышева П.Л. с учетом того, что n = 4; р5 = 4; р4 = 0


         W = 3× (4 - 1) - 2 × 4 - 0 = 1

Таблица 2.1

Обозна-

чение

Наименование

Какими звеньями образована

Класс

Характеристика

О1

Вращательная

Кривошип 1 - стойка 0

5

Плоская, низшая

А

Вращательная

Кривошип 1 - шатун 2

5

Плоская, низшая

В

Вращательная

Шатун 2 - ползун 3

5

Плоская, низшая

ВО

Поступательная

Ползун 3 - стойка 0

5

Плоская, низшая

Это значит, что в данном механизме должно быть одно начальное (ведущее) звено. В качестве начального звена принято звено 1 - кривошип.


Пассивные звенья и кинематические пары


Пассивные звенья, входящие в механизм не оказывают влияния на относительные движения других звеньев, но вносят лишние степени подвижности, или накладывают избыточные связи. При структурном исследовании механизма необходимо их выявлять.

Пример 1: Определим степень подвижности кулачкового механизма рис. 2.2.

Рис. 2.2.

Решение: Кулачковый механизм (рис. 2.2., а) – плоский, трехзвенный (n = 3): звено 0 - стойка; звено 1 - кулачок, совершает вращательное движение; звено 2 – толкатель (выходное), совершает  возвратно-поступательное движение.

Стойка принята за нулевое звено. Звенья соединены между собой тремя кинематическими парами (на структурной схеме они обозначены буквами латинского алфавита). Характеристику кинематических пар приводим в табл. 2.2.

Определяем степень подвижности механизма по формуле Чебышева П.Л. с учетом того, что n = 3; р5 = 2; р4 = 1


W = 3× (3 - 1) - 2 × 2 - 1 × 1 = 1

С целью уменьшения сопротивления движению на толкатель устанавливают ролик – звено 2’ (рис. 2.2, б). Характеристику кинематических пар приводим в табл. 2.3.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.