Меню
Поиск



рефераты скачать Теория машин и механизмов

 

w1

 


Контрольные вопросы

1.                Сформулируйте основные задачи синтеза планетарных механизмов?

2.                В чем заключаются условия соосности, соседства и сборки при синтезе планерных механизмов?

3.                Сформулируйте основные требования предъявляемые к геометрическим кривым очерчивающим профили зубьев?

4.                Назовите свойства эвольвенты?

5.                Что такое инволюта (эвольвентная функция) угла?

6.                Назовите основные свойства эвольвентного зацепления?


Лекция 8

 

Изготовление зубчатых колес. Смещение режущего инструмента. Коэффициент перекрытия. Явление подрезания. Коррегирование эвольвентного зацепления. Качественные характеристики зубчатой передачи.


Методы изготовления эвольвентных зубчатых колес

 

Существует множество вариантов изготовления зубчатых колес. В их основу положены два принципиально отличных метода:

·     метод копирования, при котором рабочие кромки инструмента по форме соответствуют обрабатываемой поверхности (конгруэнтны ей, т.е. заполняют эту поверхность как отливка заполняет форму). Строится копия, по этой копии изготавливается фреза.

·     метод обкатки, при котором инструмент и заготовка за счет кинематической цепи станка выполняют два движения - резания и огибания (под огибанием понимается такое относительное движение заготовки и инструмента, которое соответствует станочному зацеплению, т.е. зацеплению инструмента и заготовки с требуемым законом изменения передаточного отношения).

         Из вариантов изготовления по способу копирования можно отметить:

·     нарезание зубчатого колеса профилированной дисковой или пальцевой фрезой (проекция режущих кромок которой соответствует конфигурации впадин, рис. 8.1). При этом методе резание производится в следующем прядке: прорезается впадина первого зуба, затем заготовка с помощью делительного устройства (делительной головки) поворачивается на угловой шаг и прорезается следующая впадина. Операции повторяются пока не будут прорезаны все впадины. Недостатки метода: производительность низкая, сложность изготовления инструмента, по мере износа инструмента ухудшение точности и качества поверхности нарезаемого колеса, для изготовления колес с различными модулями необходим набор фрез.

Рис. 8.1

·     отливка зубчатого колеса в форму. При этом внутренняя поверхность литейной формы конгруэнтна наружной поверхности зубчатого колеса. Производительность и точность метода высокая, однако при этом нельзя получить высокой прочности и твердости зубьев.

Из вариантов изготовления по методу обкатки наибольшее распространение получили:

·          обработка на зубофрезерных или зубодолбежных станках червячными фрезами (рис. 8.2, а), долбяками (рис. 8.2, б), инструментальной рейкой – гребёнкой (рис. 8.2, в). Производительность достаточно высокая, точность изготовления и чистота поверхностей средняя. Можно обрабатывать колеса из материалов с невысокой твердостью поверхности. Долбяк позволяет нарезать колеса с внутренним зацеплением.

Рис. 8.2

·     накатка зубьев с помощью специального профилированного инструмента. Обеспечивает высокую производительность и хорошую чистоту поверхности. Применяется для пластичных материалов, обычно на этапах черновой обработки. Недостаток метода образование наклепанного поверхностного слоя, который после окончания обработки изменяет свои размеры.

·     обработка на зубошлифовальных станках дисковыми кругами. Применяется как окончательная операция после зубонарезания (или накатки зубьев) и термической обработки. Обеспечивает высокую точность и чистоту поверхности. Применяется для материалов с высокой поверхностной прочностью.

На рис. 8.3 показан контур зубьев рейки, который называется исходным, так как он служит основой для определения форм и расположения режущих кромок. Отличие размеров инструментов от нарезаемого колеса состоит в том, что их высота увеличена на радиальный зазор (0,25 m). Необходимость зазора обусловлена технологическими требованиями (охлаждение заготовки рабочей жидкостью, сход стружки). Головка зуба режущего инструмента вырезает ножку зуба в заготовке. Этот контур называется производящим, так как при движении режущих кромок он образует производящую поверхность. Прямая СС, проходящая по середине прямолинейной части зуба называется делительной прямой. По делительной прямой толщина зуба равна ширине впадины.

Для сокращения номенклатуры режущего инструмента стандарт устанавливает нормативный ряд модулей и определенные соотношения между размерами элементов зуба.

Рис. 8.3

По ГОСТ 13755-81 значения параметров исходного контура должны быть следующими:

·     угол главного профиля a = 20°;

·     коэффициент высоты зуба = 1;

·     коэффициент радиального зазора в паре исходных контуров = 0,25;

·     радиус закругления = 0,4 m.

Исходный производящий контур отличается от исходного высотой зуба h0 = 2,5m.

Исходный и исходный производящий контуры образуют между собой конгруэнтную пару (рис. 8.3), т.е. один заполняет другой как отливка заполняет заготовку (с радиальным зазором с*× m в зоне прямой вершин зуба исходной рейки).

Достоинства метода: простота изготовления инструмента, по мере износа легко заточить, обеспечение прямолинейности режущих кромок.


Смещение режущего инструмента

 

Если при нарезании колеса средняя линия инструментальной рейки касается делительной окружности нарезаемого колеса, то нарезаемое колесо называют нормальным или нулевым.

Если при нарезании среднюю линию инструментальной рейки сс сместить относительно делительной окружности нарезаемого колеса, то получим колеса нарезанные со смещением режущего инструмента.

Величина смещения:

в = x×m,

где x – коэффициент смещения, если x > 0 – нарезается положительное колесо, если x < 0 – нарезается отрицательное колесо (рис. 8.4).

Рис. 8.4


В зависимости от положения рейки зуб колеса очерчивается разными участками эвольвенты, и форма зуба при этом меняется. На рис. 8.5 приведена картина форм зубьев для различных вариантов смещения. Как видно из рисунка, при положительном смещении толщина зуба по делительной окружности увеличивается, а при отрицательном – уменьшается. Изменение геометрических параметров влечет за собой изменение прочностных характеристик зубьев нарезаемого колеса. Таким образом, соответствующим выбором коэффициента смещения можно влиять на геометрические и эксплуатационные характеристики колеса и зацепления в целом (изменяется форма зуба, изгибная и контактная прочность, коэффициент перекрытия).

Рис. 8.5

Введя в зацепление колеса нарезанные по всем трём вариантам, получают 3 варианта зацепления: нулевое, положительное и отрицательное.

 

Заострение зубчатого колеса

 

Если при нарезании зубчатого колеса увеличивать смещение, то основная и делительная окружность не изменяют своего размера, а окружности вершин и впадин увеличиваются. При этом участок эвольвенты, который используется для профиля зуба, увеличивает свой радиус кривизны и профильный угол. Толщина зуба по делительной окружности увеличивается, а по окружности вершин уменьшается.

эвольвента

 sa2

sa1     ra1      ra2

s1

 


r

 

 s2                                         rb

 

 

 

 

 

0

                            Рис. 8.6

        

         На рис. 8.6 изображены два эвольвентных зуба для которых:

 

x2 >  x1            Þ    ra2 > ra1 ;

 

s2  >  s1                             Þ    sa2 < sa1.

 

Для термообработанных зубчатых колес с высокой поверхностной прочностью зуба заострение вершины зуба является нежелательным. Термообработка зубьев (азотирование, цементация, цианирование), обеспечивающая высокую поверхностную прочность и твердость зубьев при сохранении вязкой сердцевины, осуществляется за счет насыщения поверхностных слоев углеродом. Вершины зубьев, как выступающие элементы колеса, насыщаются углеродом больше. Поэтому после закалки они становятся более твердыми и хрупкими. У заостренных зубьев появляется склонность к скалыванию зубьев на вершинах. Поэтому рекомендуется при изготовлении не допускать толщин зубьев меньших некоторых допустимых значений. То есть заостренным считается зуб у которого sa < [sa].

При этом удобнее пользоваться относительными величинами [sa /m]. Обычно принимают следующие допустимые значения:

улучшение, нормализация                     [sa /m] = 0,2;

цианирование, азотирование                [sa /m] = 0,25...0,3;

цементация                                            [sa /m] = 0,35...0,4.

Подрезание эвольвентных зубьев

 

Явление подрезания наблюдается, когда рабочий участок выходит за пределы теоретического. Рассмотрим критический случай, когда они совпадают. Участок линии зацепления, соответствующий эвольвентному зацеплению определяется отрезком зацепления. Текущая точка контакта Bl определяется пересечением линии станочного зацепления и прямой граничных точек инструмента. Если точка Bl  располагается ниже (рис. 8.7) точки N, то возникает подрезание зуба. Условие при котором нет подрезания можно записать так:

P0N ³ P0Bl .

Из D P0N0

, а из D P0BlF

.

 линия станочного зацепления

 


делит. прямая

 


h*a× m            x× m          P0    ст.-нач. прямая

 


пр.гран.точек         Bl

F           N

 a

   r                                                                rb

 

 


0

Рис. 8.5

Тогда:

,

  при x= 0

,

откуда:

,

где Zmin - минимальное число зубьев нулевого колеса нарезаемое без подрезания, при стандартном угле a = 20° и при коэффициенте высоты головки зуба , равно 17.

Если средняя прямая рейки сдвигается на величину , то предельное число зубьев будет равняться:

,

При a = 20° и , имеем:

.

Величина х – коэффициент смещения, показывает на какое число модулей нужно отодвинуть среднюю прямую от касательной к делительной окружности, чтобы при числе зубьев меньшем 17, не возникло явление подрезания (рис. 8.6, а).

Установив критическое условие подрезания эвольвентных колес, рассмотрим меры которые применяют для устранения явления подрезания.

Все эти меры называют методами коррегирования, или исправления эвольвентного зацепления.


Коррегирование


На практике применяются три способа коррегирования: высотное, угловое и смешанное.

Рассмотрим все виды коррегирования:

1.    Высотное коррегирование (рис. 8.6, б).

При высотном коррегировании два сопряженных колеса нарезаются инструментом, который получает одинаковое по величине смещение относительно оси заготовки.

У коррегированных колес диаметры окружности выступов отличаются от нормальных: у малого колеса диаметр окружности выступов увеличен, а у большого колеса на такую же величину уменьшен. Высота головок зубьев коррегированной пары неодинакова: у малого колеса больше, у большого – меньше. Общая высота не изменяется и остается такой же, как у некоррегируемых колес.

Высотное коррегирование с постоянным межосевым расстоянием рекомендуется для передач, у которых Z1 + Z2 ³ 25, а число зубьев малого колеса Z1 ³ 7.

2.    Угловое коррегирование (рис. 8.6, в).

Угловое коррегирование применяют, когда необходимо уменьшить число зубьев на малом колесе.

Поскольку выше нами установлено, что , то число зубьев уменьшается при увеличении угла зацепления. В таких случаях угол зацепления доводят до 32°. Зуб при этом утолщается у ножки. Одновременно возрастает радиус кривизны профиля.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.