Меню
Поиск



рефераты скачать Теория машин и механизмов


 Рi               w               x   t

  Рj

 


     1                     С

 t                              R12

 2

n

Рис. 11.12


 

При силовом расчете в высшей кинематической паре определяют величину реакции R12 по известным точке приложения силы (точка контакта рабочих профилей кинематической пары С) и направлению вектора силы - нормаль к профилям.

Число связей (ограничений движений) в кинематической паре 1, число разрешаемых движений - 2, число неизвестных при силовом расчете 1.

Рассмотрим плоский механизм состоящий из n звеньев, соединённых в кинематические пары: 5 класса в количестве р5 и 4 класса в количестве р4. Число уравнений статики которые мы можем составить – 3, общее число уравнений - 3×n. Каждая кинематическая пара 5 класса содержит 2 неизвестные о реакции, 4 класса 1 неизвестное, тогда общее число неизвестных . Тогда условие кинетостатической определимости плоского механизма можно записать как:

.

Т.е. для статически определимых механизмов степень подвижности равна нулю. Для рычажных механизмов , то есть группы Ассура являются статически определимыми.


Силовой расчет типовых механизмов

 

Постановка задачи силового расчета: для исследуемого механизма при известных кинематических характеристиках и внешних силах определить уравновешивающую силу или момент (управляющее силовое воздействие) и реакции в кинематических парах механизма.

Виды силового расчета:

·     статический - для механизмов находящихся в покое или движущихся с малыми скоростями, когда инерционные силы пренебрежимо малы, или в случаях, когда неизвестны массы и моменты инерции звеньев механизма (на этапах, предшествующих эскизному проектированию);

Уравнения статического равновесия:

 f                                   m

å Рi = 0;         å Mi = 0;

i=1                     i=1

где Рi - внешние силы, приложенные к механизму или его звеньям; Mi- внешние моменты сил, приложенные к механизму или его звеньям.

·     кинетостатический - для движущихся механизмов при известных массах и моментах инерции звеньев, когда пренебрежение инерционными силами приводит к существенным погрешностям;

Уравнения кинетостатического равновесия:

 f               n                    m       k

å Р+ å Риi = 0;           å Mi  + å Mиi = 0;

  i=1          i=1                            i=1      i=1

где Риi - инерционные силы, приложенные к звеньям; Mиi- моменты сил инерции, приложенные к звеньям.

·     кинетостатический с учетом трения - может быть проведен когда определены характеристики трения в кинематических парах и размеры элементов пар.

Определение числа неизвестных при силовом расчете. Для определения числа неизвестных, а, следовательно, и числа независимых уравнений, при силовых расчетах необходимо провести структурный анализ механизма и определить число и классы кинематических пар, число основных подвижностей механизма, число избыточных связей. Чтобы силовой расчет можно было провести, используя только уравнения кинетостатики, необходимо устранить в нем избыточные связи. Так как каждая связь в кинематической паре механизма соответствует одной компоненте реакции, то число неизвестных компонент реакций равно суммарному числу связей накладываемых кинематическими парами механизма.

Контрольные вопросы


19.            Классификация сил действующих на механизм.

20.            Приведите примеры механических характеристик машин.

21.            Силы инерции звеньев совершающих вращательное, поступательное и плоско-параллельное движение.

22.            Условие кинетостатической определимости кинематических цепей.


Лекция 12

 

Силовой анализ рычажных механизмов. Режимы движения механизмов. Уравнение движения механизмов. Динамическая модель механизма. Приведение сил и масс в механизмах. Динамическая модель.


Силовой анализ рычажного механизма методом планов сил

(без учета трения в кинематических парах)


Кинетостатический метод расчета позволяет находить реакции в кинематических парах, а также определить уравновешивающую силу (или уравновешивающий момент пары сил). Под уравновешивающими силами понимают силы, приложенные к ведущим звеньям, которые уравновешивают систему всех внешних сил и пар сил и всех сил инерции и пар сил инерции.

Если механизм имеет несколько степеней свободы, то для его равновесия необходимо столько уравновешивающих сил или пар сил, сколько имеется степеней свободы.

Графическое определение реакций в кинематических парах плоских механизмов с помощью планов сил применяется не только вследствие наглядности, но и потому, что внешние силы, действующие на звенья механизма, обычно известны лишь приближённо, и точность простейших графических построений оказывается вполне достаточной.

Силовой анализ механизмов методом построения планов сил рассмотрим на примере шарнирного четырёхзвенного механизма (рис. 12.1). Считаем, что по заданному закону движения начального звена 1 выполнен кинематический анализ и определены силы и пары сил инерции: кривошипа 1 Ри1; шатуна 2 Ри2, Ми2; коромысла 3 Ри3, Ми3.

Решение задачи начинают с построения кинематической схемы механизма (рис. 12.1, а) с приложенными силами. Силовой анализ проводят в порядке отсоединения групп Асура.

Силовой анализ группы Ассура (рис. 12.1, б)


Анализ начинаем с рассмотрения группы Ассура (включающей шатун 2 и коромысло 3), на которую действуют силы: веса шатуна G2; веса коромысла G3; силы и моменты сил инерции шатуна и коромысла, соответственно Ри2, Ми2, и Ри3, Ми3; реакции в шарнирах (опорах) R03, R12(соответственно: стойки 0 на коромысло 3; кривошипа 1 на шатун 2).

Строим в масштабе ml (м/мм) группу Ассура. В соответствующие точки прикладываем внешние силы параллельно их действию, при этом суммарное действие на звено силы и момента силы инерции заменяем одной результирующей силой инерции, создающей момент, действующий в обратном направлении угловому ускорению, и приложенной в центре качания:

·     точке К для коромысла 3, лежащей на расстоянии lО3К от оси вращения О3

,

где lО3S3 - расстояние от оси вращения коромысла 3 до его центра тяжести, м.

·     для шатуна 2, отстоящей от линии действия силы инерции Ри2 на расстоянии

.

В шарнирах А и О3 прикладываем реакции R12 и R 03, раскладывая их на нормальные и касательные составляющие. Нормальные составляющие  и  направляем параллельно соответственно звеньям 3 и 2, касательные  и  - перпендикулярно звеньям.

Рис. 12.1

Составляем уравнение моментов сил относительно точки В для второго звена (на рис. 12.1, б отмечаем плечи сил):

å М2В(Рi) = 0;

Полученное отрицательное значение силы говорит о том, что направление силы следует изменить на противоположное, перечеркнув крестом на схеме исходный вектор.

Значения плеч взятых с чертежа, в уравнение моментов, можно подставлять в миллиметрах, т.к. уравнение не содержит моментов сил в чистом виде (Мi).

Составляем уравнение моментов сил относительно точки В для третьего звена

å М3В (Рi) = 0;

Составляем векторное уравнение сил, действующих на группу Ассура, где неизвестные записываем в конце (нормальные составляющие реакций  и ):

å`Рi = 0;

`.

Производим графическое сложение векторов в масштабе mР (рис. 12.1, в). Последний вектор  откладываем из полюса плана сил.

На плане получаем направления и значения сил в масштабе  и . Векторно складывая касательные и нормальные составляющие, получаем абсолютные значения реакций (на рис. 12.1, в представлены пунктиром):

·     соединяя точки 1 и 2 получаем `, , Н;

·     соединяя точки 3 и 2 получаем `, , Н.

Для определения реакции в шарнире В следует векторно сложить все силы, действующие на звено 2 или 3, например, для звена 2

На рис. 12.1, в соединив точки 4 и 2, получаем направление действия реакции R32 коромысла 3 на шатун 2.

После рассмотрения условий равновесия группы Асура переходим к определению сил, действующих на начальный механизм.


Силовой анализ начального механизма

 

Строим кинематическую схему начального механизма в масштабе (рис. 12.1, г), в соответствующие точки прикладываем силы: инерции кривошипа 1 Ри1; веса кривошипа 1 G1; реакции в шарнирах (опорах) R21 - шатуна 2 на кривошип 1; R01 - стойки 0 на кривошип 1; уравновешивающую силу Ру.

Реакция шатуна 2 на коромысло 1, R21 определена при рассмотрении силового анализа группы Ассура (но там определена реакция кривошипа 1 на шатун 2, поэтому при приложении её необходимо изменить направление на противоположное);

Уравновешивающая сила Ру. (реакция двигателя на механизм), неизвестная величина, прикладывается в шарнире А перпендикулярно О1А.

Указываем плечи действия сил относительно шарнира О1 и составляем уравнение моментов всех сил относительно О1:

å МО1(Рi)= 0;

.

Момент уравновешивающей силы (здесь rкр – радиус кривошипа, м).

Реакцию в шарнире О1, R01, определяем из векторного уравнения равновесия всех сил, действующих на звено 1:

.

Строим план сил (рис. 12.1, д) в масштабе сил mр, Н/мм, где замыкающий вектор определяет направление и величину опорной реакции R01, её значение .

 

Определение уравновешивающей силы методом Н.Е. Жуковского


При определении мощности двигателя и установлении его типа, расчете махового колеса, составлении характеристики регуляторов и в ряде других случаев необходимо знать только уравновешивающий момент или уравновешивающую силу, реакции в кинематических парах исследуемого механизма при этом могут остаться неизвестными. В этом случае удобнее использовать теорему Жуковского: если какой-либо механизм под действием системы сил, находится в состоянии равновесия, то повёрнутый на 90° в какую-либо сторону план скоростей, рассматриваемый как твёрдое тело, вращающееся вокруг полюса плана и нагруженное теми же силами, приложенными в соответствующие точки плана, также находится в равновесии.

Теорему Жуковского можно применить и к системе, не находящейся в равновесии. Для этого достаточно, кроме действующих сил приложить и силы инерции.

Для доказательства теоремы воспользуемся принципом возможных перемещений: если система находится в равновесии, то сумма элементарных работ на возможных перемещениях равна нулю (возможные перемещения – это перемещения допускаемые связями):

,

или разделив на dt,

,

Получаем:

,

где Рi – задаваемые силы; ui – скорости точек приложения Рi; wj – скорости вращения звеньев к которым приложены моменты сил Мj; Ni, Nj – мощности соответственно сил Рi и моментов сил Мj.

Предположим, что в какой то точке звена приложена сила Рi перенесённая параллельно самой себе в соответствующую точку повёрнутого на 90° плана скоростей. Мощность этой силы можно выразить следующим образом:

,

где hi – перпендикуляр, опущенный из полюса плана скоростей на линию действия силы Рi.

Так как полученное выше уравнение, определяющее величину Ni, имеет место для всех сил Рi, действующих на другие звенья механизма, то получаем:

.

Поскольку , то:

,

что и является доказательством теоремы.

Применим метод Жуковского к нахождению приведенной, или уравновешивающей силы Ру.  Рассмотрим шарнирный четырёхзвенный механизм (рис. 12.2, а) находящийся в состоянии равновесия под действием сил: веса кривошипа 1 G1, шатуна 2 G2 и коромысла 3 G3; инерции: кривошипа 1 Ри1; шатуна 2 Ри2, Ми2; коромысла 3 Ри3, Ми3. Суммарное действие на звено силы и момента силы инерции заменяем одной результирующей силой инерции, создающей момент, действующий в обратном направлении угловому ускорению, и приложенной в центре качания (для шатуна 2 – K2, коромысла 3 – K3).

Рис. 12.2

Для приведения механизма в равновесное состояние необходимо, в какой либо точке механизма приложить уравновешивающую силу Ру. За точку приложения уравновешивающей силы чаще всего принимают точку А начального звена, направляя её перпендикулярно к О1А. Строим в произвольном масштабе повернутый на 90° план скоростей механизма (рис. 12.2, б) и переносим в соответствующие точки вектора внешних сил, а также уравновешивающую силу параллельно их действию. Принимая план скоростей за рычаг, нагруженный силами G1, G2, G3, Ри1, Ри2, Ри3 и Ру, составляем уравнение моментов этих сил относительно полюса плана скоростей рu:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.