Меню
Поиск



рефераты скачать Проект кондитерской фабрики, вырабатывающей 11,5 тыс. т/год конфет и мармеладных изделий



9.4 Описание схем контроля, регулирования и сигнализации


Сахар-песок из сборника (I) подается в автовесы (II), а оттуда в варочный котел. Уровень сахара в сборнике регулируется при помощи электронного сигнализатора уровня ЭСУ-214. Работа сигнализатора основана на принципе измерения электрической емкости системы электрод датчика – измеряемая среда – стенки резервуара. Емкость включена в схему генератора высокочастотных колебаний, в результате чего резко возрастает ток в анодной цепи. В анодную цепь включено электромагнитное реле МКУ-48 (поз. 12б), которое срабатывает при возрастании тока. При этом обесточивается цепь питания электромагнитного клапана 15с 979 нж (поз. 12в) и шиберной заслонки (поз. 12г). В этом случае загорается сигнальная лампа СЛ-220 (HL 1).

В смеситель поступает агар и вода. Уровень воды в VIII регулируется  аналогично уровню сахара в сборнике (I). Температура воды, поступающей в смеситель контролируется и регулируется следующим образом.

Термометр сопротивления ТСМ-6097 (поз. 1а) преобразует значение температуры воды в VIII в изменение активного сопротивления. Термометр включен в одно из плеч вторичного показывающего и регулирующего прибора собранного по мостовой схеме ДИСК-250-2431 (поз. 1б). В прибор встроен пневматический ПИ-регулятор, в котором сравниваются 2 значения: с датчика (ТСМ-6097) и задатчика. В зависимости от рассогласования вырабатывается управляющее воздействие, которое через пневмопанель, предназначенную для плавного перехода с автоматического управления на ручное и обратно, поступает на регулирующий клапан с пневмоприводом типа МИМ-25ч30нж (поз. 1г), установленный на трубопроводе подачи пара низкого давления и изменяющий его расход.

Продолжительность набухания агара поддерживается при помощи командного электропневматического прибора КЭП-12у (КТ1). При нажатии кнопки

КУ-1112А  (SB3) включается КЭП-12у, который согласно циклограмме по достижении времени набухания отключает мешалку посредством обесточивания цепи питания двигателя М4.

Содержание сухих веществ в смесителе контролируется при помощи диэлькометрического концентратомера ДК-1М, действие которого основано на зависимости абсолютной диэлектрической проницаемости от свойств контролируемой среды и химического состава. сигнал с датчика концентратомера (поз. 19а) поступает электронный блок (поз. 19б) и с него на дифференциально-трансформаторный прибор КСД-3 (поз. 19в), который показывает и регистрирует текущее значение концентрации сухих веществ.

Давление пара в трубопроводе контролируется следующим образом. Давление пара преобразуется преобразователем давления «Сапфир 22ДИ-Ех»-2140 (поз. 7а) в пропорциональный токовый сигнал 0-5 mA, который поступает на вторичный прибор – амперметр КСУ-3 (поз. 7б). В случае превышения давлением критического значения загорается сигнальная лампа СЛ-220 (HL5).

Набухший агар перекачивают насосом в варочный котел (IV). Температура воды в VIII (поз. 1а – 1г). Уваривание АСПС  происходит до содержания сухих веществ 80±2 %. Содержание сухих веществ в IV контролируется при помощи диэлькометрирческого концентратомера ДК-1М, действие которого основано на зависимости абсолютной диэлектрической проницаемости от свойств контролируемой среды. Сигнал с датчика концентратомера (поз. 20а) поступает на электронный блок (поз. 20б), а с него на вторичный дифференциально-трансформаторный прибор КСД3-1341Т (поз. 20в), который показывает текущее значение концентрации. В прибор встроен двухпозиционный регулятор. По достижении заданной концентрации сухих веществ управляющий сигнал с регулятора через переключатель УП-5300 (SA4) поступает на магнитный пускатель    ПМЕ-222 (КМ3), включающий двигатель М5 насоса. АСПС насосом перекачивается в змеевиковый варочный аппарат. Давление в аппарате (IX) регулируется следующим образом. Преобразователь давления 13ДИ13 (поз. 9а) преобразует давление в аппарате в стандартный пневматический сигнал 0,2-1 кгс/см2. Этот сигнал поступает на вторичный пневматический показывающий прибор ПВ 10.1Э (поз. 9б) и далее на пневматический ПИ-регулятор ПР3.31 (поз. 9в). Управляющий сигнал с регулятора поступает на регулирующий клапан с пневмоприводом типа МИМ-25ч40нж (поз. 9г), установленный на трубопроводе пара высокого давления и изменяющий его расход.

Уваренная масса вместе со вторичным паром поступает из варочной колонки (IX) в выпарную часть (Х). Давление пара в змеевике контролируется аналогично давлению пара низкого давлению пара низкого давления в трубопроводе (поз. 7а, 7б). Температура массы в выпарной части регулируется с помощью пара высокого давления аналогично (1а – 1г).

Затем масса попадает в темперирующую машину (XII). Уровень массы контролируется при помощи акустического уровнемера ЭХО-3. Принцип работы ультразвукового датчика уровня основан на свойстве ультразвуковых колебаний отражаться от границы раздела сред с различным акустическим сопротивлением. В датчике используется метод акустической импульсной локации границы раздела (газ – жидкость) со стороны газа. Мерой уровня является время распространения ультразвуковых колебаний от источника излучения до плоскости границы раздела и обратно до приемника. Сигнал с датчика (поз. 15а) поступает на электронный блок АБ-2 (поз. 15бб), на выходе которого имеется сигнал 0-5 mA. Этот сигнал поступает на вторичный показывающий прибор ДИСК-250-1221 (поз. 15в) со встроенным позиционным регулятором. Управляющий сигнал с регулятора через переключатель УП-5300 (SA5) поступает на электрический исполнительный механизм, управляющий работой шиберной заслонки (поз. 15г).

Мармеладная масса из темперирующей машины поступает на отливку через смеситель (XIII). Уровень мармеладной массы в смесителе и головке отливочной машины регулируется аналогично контуру (поз. 15а – 15г).

Температура в охлаждающей камере преобразуется термометром сопротивления ТСМ-6097 (поз. 6а) в изменение активного сопротивления. Термометр включен в одно из плеч автоматического моста КСМ-3 (поз. 6б), который показывает текущее значение температуры. При превышении температурой критического значения загорается сигнальная лампа СЛ-220 (HL12).

Выбранный из форм мармелад подается на транспортер, где обсыпается сахаром. Частота вращения вала ковшового элеватора, подающего сахар на обсыпку, регулируется следующим образом. Частота вращения измеряется тахометром ТЭ, в состав которого входят тахогенератор постоянного тока (поз. 21а) и стрелочный измерительный прибор Ц 1600/К (поз. 21б). Частота вращения двигателя изменяется посредством тиристорного привода ЭТ-1 (поз. 21в) при увеличении (уменьшении) величины сопротивления на резисторе ППБ-15Г (поз. 21г).

Запуск двигателей осуществляется следующим образом. При нажатии кнопки КУ-1112 (SB9 – SB24) через переключатель УП-5300 (SA8 – SA15) замыкаются контакты магнитного пускателя (КМ5 – КМ12), приводящего в действие соответствующий двигатель.

10 Архитектурно-строительная часть


10.1 Характеристика района строительства


Кондитерская фабрика проектируется в г. Лиски Воронежской области.

Характеристика района строительства:

- глубина промерзания грунта 1,2 – 1,5 м;

- ветровой и снеговой районы II В;

- средняя температура наиболее холодной пятидневки –28 оС;

- средняя температура наиболее тёплой пятидневки 25,9  оС;

- годовое количество осадков 539 мм;

- преобладающее направление ветра: декабрь – февраль - западный,

    июнь  – август – северный;

-          продолжительность периода со средней температурой  £  8 оС – 196 дней.


10.2 Характеристика объёмно-планировочных решений


Основной производственный корпус представляет собой трехэтажное здание размером 96х24 м, высота каждого этажа 4,8 м, сетка колонн 6х6 м, в осях 1…17. Пристройка в осях 1…8 габаритным размером 42х12 м, высота этажа 14,4 м, в которой находится закрытый склад бестарного сахара-песка, пюре, патоки и просеивательное отделение.

  Здание корпуса каркасного типа; многоэтажное; отапливаемое; по взрыво- и пожароопасности – категории Б, В, Д; по капитальности – 1 класс; по долговечности – 1 класс; без кранового оборудования; по степени огнестойкости – II.

10.3 Описание строительных конструкций


Фундамент здания сборный железобетонный стаканного типа размером 2,4х1,5х0,3 м. Глубина заложения фундамента 1,7 м. Железобетонная фундаментная балка трапециевидной формы 5950х300(200)х300 мм.

Колонны сборные железобетонные для многоэтажных зданий сечением 400х400 мм.

Стены помещений выполнены из легкобетонных панелей из ячеистого бетона плотностью 800 кг/м3, размером 5980х300х1185 мм.

Межэтажные перекрытия и покрытия состоят из сборных железобетонных элементов: ригелей и плит. Для перекрытия используются ригель таврового сечения размером 5480х750х800 мм, основные плиты имеют размеры 6000х1500х400 мм, доборные –5550х740х400 мм.

Основные лестницы размещены в кирпичных клетках, стены которых выполнены из огнеупорного кирпича толщиной 380 мм. Лестницы смонтированы из сборных железобетонных элементов в виде маршей и площадок с полной отделкой поверхностей. Высота подъема маршей 1200 мм, ширина марша 1250 мм.

Для обслуживания оборудования расположенного на высоте, используют металлические площадки со служебными лестницами, уклон марша которых равен 45º, ширина марша 800 мм, высота ступени 200 мм. Площадки и лестницы имеют ограждения высотой 1000 мм.

Естественное освещение помещений осуществляется через оконные проемы размером 3000х1800 мм и 1000х1800 мм.

Остекленные ограждения выполнены в виде отдельных окон из обычного стекла, разделенных простенками. Оконный переплет деревянный  с горизонтальным способом открывания створок.

Кровля плоская, совмещенная с внутренним водостоком для каркасных зданий. Состав покрытий: бронирующий слой, цементная стяжка, слой пароизоляции, утеплитель, цементная стяжка, три слоя мягкой кровли, железобетонная плита.

Состав пола: покрытие – из керамической плитки, деревянные; прослойка – цементно-песчаный раствор; гидроизоляция – гидроизол; стяжка – легкий бетон.

Для подачи сырья и вспомогательных материалов и спуска готовой продукции используется 3 грузовых лифта общего назначения грузоподъемностью     1000 кг, размер шахт 2600х2700 мм, размер кабины 2000х2000х2200 мм.

Двери одно-, двухстворчатые, деревянные. Высота дверей 2090 мм, ширина  988 и 1400 мм.

Полы в варочном отделении, в помещениях моек и других, связанных с большим выделением влаги имеют  гидроизоляцию, состоящую из двух слоев гидроизола, уложенных на битумную мастику.


10.4 Отделка помещений


В производственных цехах пол отделан керамической плиткой, уложенной на цементно-песчаный раствор. В административном корпусе полы деревянные.

В складах и подсобно-производственных помещениях кирпичные плоскости штукатурятся; стены, колонны, потолки белят известковой краской.

Потолки в производственных помещениях побелены, стены оштукатурены и окрашены масляной краской до высоты 1,8 м от пола. В душевых, умывальных, уборных полы выложены керамической плиткой. Наружные стены покрыты водостойкой синтетической краской; оконные рамы, двери – масляной.


11 Санитаро-техническая часть


11.1 Вентиляция


11.1.1 Расход воздуха

Расчет ведется по [23]

Температура и влажность воздуха в помещении обеспечивается в летний    период за счет вентиляции, согласно [24] .

Количество вентилируемого воздуха Vв (м3/ч), определяется по формуле


                                               Vв=Vзд · n ,                              (11.1)


где Vзд - объем помещения, м3 ;

       n - кратность воздухообмена.

Vв= 4 · 6220,6 = 24882,4 м/

Расход теплоты Q, Вт, на подогрев воздуха


                                                     Q = Vв · Сv(tв - tн),                     (11.2)


где Сv - удельная объемная теплоемкость воздуха, Сv = 1,206 кДж/(м3 · град);

       tв, tн - соответственно температура вентиляционного воздуха, подаваемого в помещение, и наружного, ºС.

Q = 24882,4 · 1,206 (18-(-9)) = 810220,7 Вт

Расход теплоносителя mт, кг/с, для подогрева вентиляционного воздуха


                                             mт = Q/Δiт · Кзап,                                 (11.3)


где Δiт - разность энтальпий теплоносителя на входе и выходе из калорифера, Дж/кг        при этом для воды

                                           Δiт = r,                                        (11.4)


r -  удельная теплота парообразования, Дж/кг.

r = 2200 · 10-3 Дж/кг


mт = 810220,7 / (2200 ∙ 103) · 1,2 = 0,44 кг/с


11.1.2 Определение потерь тепла с вентиляционным воздухом

При работе вентиляционной системы из здания будет выносится тепло. Его  количество ΔQв, Вт, определяется по формуле


                                              ΔQв = Vв · Св · Δtв,                                     (11.5)


где Δtв - разница температур уходящего и поступающего воздуха, ºС.  


                                        Δtв = ψ(Н-2) + 2…3,                                (11.6)


где Н – расстояние от пола до оси отводящего отверстия,м;

 ψ-градиент температуры по высоте помещения, ºС/м, ψ = 0,5 - 1,5.

Δtв = 1,5 ∙ (4,8 - 2) = 6,2 ºС ;

ΔQв = 24882,4 · 1,206 · 6,2 = 186050,7 Вт.


11.1.3 Расчет и подбор калориферов

 Для подогрева воздуха, подаваемого в здание в холодный период года, используются калориферы, обогреваемые паром с давлением до 0,3 – 0,4 МПа. В результате расчетов был выбран калорифер КП 3-12.

Число калориферов


                                           Zт = Q · Кз / Qк ,                                   (11.7)


                                          ZВ = Vв · Кз / VК,                                   (11.8)


где Кз = 1,2 – коэффициент запаса;

QК – тепловая мощность одной секции калорифера, кВт;

VК – пропускная способность секции калорифера по воздуху, м3/ч.

 ZТ = 810220,7 · 1,2 / 552300 = 1,7 ≈ 2 шт.

ZВ = 24882,4 · 1,2 / 25000 = 1,2 ≈ 2 шт.


11.1.4 Определение мощности электродвигателя привода вентилятора

Потребная мощность электродвигателя N, кВт, для вентилятора определяется по формуле


                                         N = Vв · Рс / (ηв · ηпр) · 10 -3,                            (11.9)


 где Vв - количество вентилируемого воздуха, м3/с;

        Рс - cопротивление вентиляционной сети, Па;

        ηв - КПД вентилятора;

        ηпр - КПД привода или промежуточной передачи.

Сопротивление вентиляционной сети  определяется по формуле


                                                 Рc = 1,2 ∙ (Рк + Рв),                                  (11.10)


где  Рк – сопротивление калориферов, Па, Рк=190 Па;


Рв – сопротивление воздуховодов, Па, Рв = 10 - 20 Па.

Рс = 1,2 ∙ (190 + 15) = 246 Па;

N = 1,72 · 246/ (0,6 · 0,97) · 10 -3 = 0,72 кВт.

По данным расчетов подобрали вентилятор ВР 290-46 №6,3П.


11.2 Отопление


На проектируемой фабрике во всех помещениях, кроме котельной, трансформаторной, холодильного помещения предусмотрено центральное отопление.

Отопительная система на фабрике двухтрубная с верхней разводкой. В качестве нагревательных приборов предусмотрены гладкие чугунные радиаторы типа М-140, которые расположены вдоль наружных стен под окнами.

Расчет расход тепла на отопление Q, Вт


                                        QОТ = QПТ – QОБ + ΔQВ ,                         (11.11)


где  QПТ - потери тепла зданием в окружающую среду через ограждения, Вт;  

QОБ – теплота, выделяющаяся в здании пари работе технологического оборудования и транспортных устройств, Вт;

ΔQВ – теплопотери с вентиляционным воздухом.

Потери теплоты зданием Qпт, Вт, можно приближенно определить по   формуле


                                          QПТ = qОТ ∙ VЗД ∙ (tП – tН),            (11.12)


где qОТ - удельная тепловая характеристика здания, Вт/(м3·ºС), qОТ=3,4Вт/(м3·ºС);

VЗД - объем здания, м3;

tП, tН – температура помещения и наружного воздуха соответственно, ºС.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.