Меню
Поиск



рефераты скачать Учебник по физике для поступающих в ВУЗ /Экзаменационные вопросы по физике (2006-2007)/

Определение и формула механического напряжения

Определение, формула и обозначение относительного удлинения

Модуль Юнга. Обозначение. Формула. Единицы измерения

Отличие модуля Юнга от коэффициента жесткости

Формулировка закона Гука. Область его применения

Определение предела упругости. Пластическая деформация

Определение предела прочности



Деформация – изменение формы и размеров твердого тела под действием внешней силы.


Различают два вида деформации:

- упругую

- пластическую


Упругая деформация – деформация, исчезающая после прекращения действия внешней силы

(резина, сталь)


Пластическая деформация – деформация, сохраняющаяся после прекращения действия внешней силы.

Материалы, у которых незначительные нагрузки вызывают пластические деформации называют пластическими - свинец, алюминий, воск, пластилин и т.д.


Деление материалов на упругие и пластические в значительной мере условно. Так при больших нагрузках стал ведет себя как пластический материал (например, при штамповке)

Пластичность или упругость материала значительно зависят от его температуры.


Материал называют хрупким, если он разрушается при небольших деформациях (чугун, стекло, фарфор).

У всех хрупких материалов напряжение (см.ниже) очень быстро растет с увеличением деформации. Пластические свойства у хрупких материалов практически не проявляются.


Различают следующие виды деформаций:

- растяжения

- сжатия

- сдвига (деформация, при которой происходит смещение слоев тела друг относительно друга)

- изгиба

- кручения

Деформации кручения и изгиба сводятся к неоднородному растяжению или сжатию и неоднородному сдвигу.


Рассмотрим упругую деформацию стержня длиной l, сечением S, под действием силы F

Деформация стержня прекращается тогда, когда сила упругости становится равной внешней силе. Согласно закону Гука:

Fупр = k∆l

∆l – абсолютное удлинение стержня


Для характеристики упругих свойств тела вводится понятие механическое напряжение.


Механическое напряжение – физическая величина, равная отношению силы упругости к площади поперечного сечения тела:

σ =

Единица измерения – Па (Паскаль) = Н/м2 (единицы давления)


Более удобной величиной, чем абсолютное удлинение, является относительное удлинение тела.


Относительное удлинение равно отношению абсолютного удлинения тела к его первоначальной длине:

e =

Относительное удлинение показывает, какую часть первоначальной длины l0 тела составляет его абсолютное удлинение.


σ =  ; e =  Þ σ = (k ) e


Коэффициент пропорциональности k между напряжением σ и относительным удлинением называется модулем упругости или модулем Юнга.


Модуль Юнга измеряется в Па.


В отличие ото жесткости k, характеризующей только данный стержень, модель упругости Е характеризует вещество, из которого он сделан.

Для большинства материалов модуль Юнга определен экспериментально (по формуле), измеряя напряжение и относительное удлинение при малых деформациях.


Закон Гука (через относительное удлинение тела):

При упругой деформации тела механическое напряжение прямо пропорционально относительному удлинению тела:

σ = Е e


Закон Гука справедлив лишь при малой деформации, т.е. при малом относительном удлинении.


Максимальное напряжение σп, при котором еще выполняется закон Гука называют пределом пропорциональности.


Для исследования деформации растяжения, стержень при помощи специального устройства подвергают растяжению, а затем измеряют удлинение образца и возникающие в нем напряжения.

График зависимости напряжения σ от относительного удлинения e называется – диаграмма растяжения

Если увеличивать нагрузку, то деформация становится нелинейной, напряжение перестает быть прямо пропорционально относительному удлинению. Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ).


Максимальное напряжение, при котором еще не возникают заметные остаточные деформации(относительная остаточная деформация не превышает 0,1%), называют пределом упругости σуп.


Если внешняя нагрузка такова, что напряжение в материале превышает предел упругости, то после снятия нагрузки тело остается деформированным.


При некотором значении напряжения, соответствующем на диаграмме точке С, удлинение нарастает практически без увеличения нагрузки.

Это явление называется текучестью материала (участок CD).


Далее с увеличением деформации кривая напряжений начинает немного возрастать и достигает максимума в точке Е. Затем напряжение резко спадает и тело разрушается.

Разрыв происходит после того, как напряжение достигает максимального значения σпч, называемого пределом прочности.


Начиная с некоторого emax деформация перестает быть упругой, становясь пластической.


Предел упругости – максимальное напряжение в материале, при котором деформация еще является упругой.

(Не возникают заметные остаточные деформации, относительная остаточная деформация не превышает 0,1%)


Пластические материалы – материалы, которые не разрушаются при напряжении, значительно превышающем предел упругости.

(Пример – изгиб металлов, штамповка)


Пластичными называют материалы, у которых незначительные нагрузки вызывают пластические деформации (глина, песок).


Предел прочности – максимальное механическое напряжение, возникающее в теле до его разрушения.

Пределы прочности материалов на растяжение и сжатие различны.


Прочностью материала называется его свойство выдерживать действия внешних сил без разрушения.


Запасом прочности называется число, показывающее, во сколько раз предел прочности больше допускаемого напряжения.


Деление материалов на упругие и пластичные в значительной мере условно. Получение материалов с заданными механическими, магнитными, электрическими и др. свойствами – одно из основных направлений современной физики твердого тела.

СИЛА ТРЕНИЯ (уч.10кл. стр.107-111)

Природа силы трения

Определение силы трения

Трение покоя. Природа. Определение. Направление. Формулы

Максимальная сила трения покоя

Коэффициент трения покоя. Обозначение и единицы измерения. От чего он зависит

Трение скольжения Природа. Определение. Направление. Формулы

Коэффициент трения скольжения. Обозначение и единицы измерения. От чего он зависит

Зависимость силы трения скольжения от относительной скорости соприкасающихся тел (уч.10кл.стр.109 на полях) и ее отличие от силы упругости

Трение качения Природа. Определение. Направление. Формулы

Коэффициент трения качения. Обозначение и единицы измерения. От чего он зависит

Соотношение трения покоя, скольжения и качения. Примеры

Жидкое трение


Сила трения – сила, возникающая при соприкосновении поверхностей тел, препятствующая их относительному перемещению, направленная вдоль поверхности соприкосновения.


Сила трения, как и сила упругости, имеет электромагнитную природу


При контакте твердых тел различают три вида трения:

- трение покоя

- трение скольжения

- трение качения


Трение покоя – трение, возникающее при отсутствии относительного перемещения соприкасающихся тел

Сила трения покоя равна по модулю внешней силе, направленной по касательной к поверхности соприкосновения тел и противоположна ей по направлению

Сила трения покоя – сила трения, препятствующая движению одного тела по поверхности другого


При уменьшении внешней силы происходит микроскопическое смещение трущихся поверхностей. Оно продолжается до тех пор, пока силы притяжения между взаимодействующими атомами выступов не скомпенсируют внешнюю силу.


Максимальная сила трения покоя не зависит от площади соприкосновения поверхностей, а зависит от силы нормального давления F

(Fтр.п)max ~ S ~ F┴


По третьему закону Ньютона сила нормального давления равна по модулю силе реакции опоры N. Таким образом максимальная сила трения покоя пропорциональна силе реакции опоры.

Fтр.р max = μпN

μп – коэффициент трения покоя

Коэффициент трения зависит от характера поверхности и от сочетания материалов, из которых состоят соприкасающиеся поверхности.


Максимальное критическое значение силы трения покоя определяется величиной силы взаимодействия поверхностных слоев соприкасающихся тел

Трение скольжения возникает при относительном перемещении соприкасающихся тел.

Сила трения скольжения всегда направлена в сторону, противоположную относительной скорости соприкасающихся тел.


Вектор силы трения скольжения направлен против вектора скорости, поэтому эта сила всегда приводит к уменьшению относительной скорости тела


Сила трения скольжения остается постоянной и несколько меньшей силы трения покоя.

Она пропорциональна силе нормального давления и, следовательно, силу реакции опоры:

Fтр = μN

μ – коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей

μ< μп


Разрыв атомных (молекулярных) связей – главное отличие механизма возникновения силы трения от механизма возникновения силы упругости. Именно поэтому сила трения скольжения зависит от относительной скорости движения соприкасающихся тел.

 

Трение качения возникает при качении цилиндрического или шарообразного тела без проскальзывания по плоскости или изогнутой поверхности.

Молекулярные связи при подъеме участков колеса рвутся быстрее, чем при скольжении.

Поэтому сила трения качения много меньше силы трения скольжения.


Сила трения качения пропорциональна силе реакции опоры

Fтр.кач = μкач N

μкач- коэффициент трения качения


Коэффициент трения качения много меньше коэффициента трения скольжения.

μкач< <μ


Для уменьшения сил трения в технике применяются колёса, шариковые и роликовые подшипники.


Жидкое трение возникает при движении тела в жидкости или газе.

Сила жидкого трения много меньше силы сухого трения.


В жидкости и газе нет силы трения покоя (даже самая малая сила, приложенная к телу в жидкости или газе, сообщает ему ускорение)

Сила жидкого трения зависти от направления движения, значения скорости (при небольших скоростях она пропорциональна скорости тела, а при больших – квадрату или кубу скорости).

Сила сопротивления зависит от формы тела.

Форма тела, при которой сопротивление мало называют обтекаемой формой.


Отличительной способностью жидкостей и газов является их текучесть, которая связана с малыми силами трения при относительном движении соприкасающихся слоев.

КОЭФФИЦИЕНТ ТРЕНИЯ (уч.10кл. стр.107-111)

См.выше «Сила трения»

ЗАКОН ТРЕНИЯ СКОЛЬЖЕНИЯ (уч.10кл. стр.107-111, 115-117)

Трение скольжения Природа. Определение. Направление. Формулы

Коэффициент трения скольжения. Обозначение и единицы измерения. От чего он зависит

Зависимость силы трения скольжения от относительной скорости соприкасающихся тел (уч.10кл.стр.109 на полях) и ее отличие от силы упругости

Соотношение трения покоя, скольжения и качения. Примеры

Движение тела по горизонтальной плоскости (уч.10кл.стр.115-117)

Соскальзывание тела с наклонной плоскости (уч.10кл.стр.115-117)



См. выше «Сила трения»


Скольжение тела по горизонтальной поверхности

На рисунке видно уменьшение веса и силы трения скольжения за счет вертикальной составляющей силы, приподнимающей тело

Второй закон Ньютона в векторной форме :


Соскальзывание тела с наклонной плоскости


Второй закон Ньютона в векторной форме:


Вес тела на наклонной опоре меньше силы тяжести.

N = P = mg cos α


Соскальзывание тела с наклонной плоскости происходит, если a > 0, т.е если коэффициент трения скольжения μ < tgα. Если μ > tgα, то тело покоится на наклонной плоскости

ТРЕТИЙ ЗАКОН НЬЮТОНА (уч.10кл. стр.93-95)

Сила действия и противодействия. Одинаковость природы этих сил.

Пример столкновение тел

Третий закон Ньютона. Формулировка

Пример силы реакции опоры

Пример сил действия и противодействия

Пример реактивного движения (см.ниже уч.10кл.)


Сила, сообщающая телу ускорение, является мерой внешнего воздействия на него другого тела.

Эта сила возникает при взаимодействии между телами.

Тела, как объекты взаимодействия, равноправны. Со стороны второго тела на первое так же действует сила – сила противодействия.


Силы действия и противодействия, возникающие в результате взаимодействия тел, являются силами одной природы.


Третий закон Ньютона:

«Любому действию всегда препятствует равное и противоположное противодействие»

Силы, с которыми два тела действуют друг на друга, равны по модулю, противоположны по направлению и действуют вдоль прямой, соединяющей эти тела.


Третий закон Ньютона справедлив для любого соотношения масс взаимодействующих тел при скоростях много меньших скорости света.


Ускорение, приобретаемое телами в результате их взаимодействия, зависит от соотношения масс этих тел.


Третий закон Ньютона связывает между собой силы, с которыми тела действуют друг на друга. Если два тела взаимодействуют друг с другом, то силы, возникающие между ними приложены к разным телам, равны по величине, противоположны по направлению, действуют вдоль одной прямой, имеют одну и ту же природу.

МОМЕНТ СИЛЫ

l - плечо силы- кратчайшее расстояние от точки оси вращения до линии действия силы.

MF1 = - F1l1

Знак момента силы зависит от того какое направление вращения принято за положительное. На плоскости обычно принимают:

MF1 < 0, т.к. вызывает вращение против часовой стрелки.

MF2 > 0, т.к вызывает поворот по часовой стрелке.


Кратчайшее расстояние между точкой опоры и прямой, вдоль которой действует на рычаг сила, называется плечом силы.

Чтобы найти плечо силы, надо из точки опоры опустить перпендикуляр на линию действия силы.

Длина этого перпендикуляра и будет плечом силы.


Момент силы – произведение модуля силы, вращающей тело, на ее плечо

M = F l

Единицы измерения Н*м  Обозначение: М

За единицу момента силы принимается момент силы в 1Н, плечо которого равно 1М


Момент силы характеризует действие силы и показывает, что оно зависит одновременно и от модуля силы, и от ее плеча.


Правило моментов:

Тело находится в равновесии, если момент сил, вращающих его по часовой стрелке, равен моменту сил, вращающих его против часовой стрелки.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.