Т = 2π
Полное сопротивление
колебательного контура переменному току:
Z =
Резонанс в
колебательном контуре – физическое явление резкого возрастания амплитуды
колебаний силы тока в контуре при совпадении частоты вынужденных колебаний с
частотой собственных колебаний в контуре.
Резонансная кривая –
график зависимости амплитуды вынужденных колебаний силы тока от частоты
приложенного к контуру напряжения.
В полупроводниках
существует два механизма собственной проводимости – электронная и дырочная.
Электромагнитная
волна – возмущение электромагнитного поля, распространяющееся в пространстве со
скоростью света.
Электромагнитная
волна является поперечной. Направления векторов напряженности электрического
поля и индукции магнитного поля перпендикулярны друг другу и направлению
распространения волны
Излучение
электромагнитных волн возникает при ускоренном движении электрических зарядов.
Плотность энергии
электромагнитного поля в вакууме пропорциональна квадрату напряженности
электрического поля:
wэм
= ε0E2
ε0 –
диэлектрическая проницаемость вакуума
Уравнение бегущей
гармонической волны напряженности электрического поля, распространяющейся в
положительном направлении оси Х со скоростью v:
E = E0 sin [ w (t - ) ]
Длина волны –
расстояние, на которое распространяется волна за период колебаний ее источника:
λ = vT
Плоскополяризованная
(или линейнополяризованная) электромагнитная волна – волна, в которой вектор Е
колеблется только в одном направлении, перпендикулярном направлению
распространения волны.
Плоскость поляризации
электромагнитной волны – плоскость, проходящая через направление колебаний вектора
напряженности электрического поля и направление распространения волны
Фронт
электромагнитной волны – поверхность постоянной фазы напряженности
электрического поля и индукции магнитного поля.
Плотность потока
энергии электромагнитной волны – мощность электромагнитного излучения,
проходящая сквозь единицу площади поверхности, расположенной перпендикулярно
направлению распространения волны.
Интенсивность
электромагнитной волны – среднее значение плотности потока энергии
электромагнитной волны.
Интенсивность
гармонической электромагнитной волны прямо пропорциональна квадрату амплитуды
напряженности электрического поля:
I ~ E02
Интенсивность
излучения точечного источника убывает обратно пропорционально квадрату
расстояния до источника:
I ~ 1/r2
Интенсивность
гармонической электромагнитной волны прямо пропорциональна четвертой степени ее
частоты:
I ~ v4
Спектр
электромагнитных волн условно делят на восемь диапазонов частоты (длины волн):
- волны звуковой
частоты
- радиоволны
- СВЧ (микроволновое)
излучение
- инфракрасное (ИК)
излучение
- видимый свет
- ультрафиолетовое
(УФ) излучение
- рентгеновское
излучение
- γ - излучение
Радиосвязь – передача
и прем информации с помощью радиоволн, распространяющихся в пространстве без
проводов.
Различают четыре вида
радиосвязи, отличающиеся типом кодирования передаваемого сигнала:
- радиотелеграфная
связь
- радиотелефонная
связь и радиовещание
- телевидение
- радиолокация
Модуляция
передаваемого сигнала– кодированное изменение одного из его параметров
Амплитудная модуляция
– изменение амплитуды высокочастотных колебаний по закону изменения
передаваемого сигнала.
Частотная модуляция -
изменение частоты высокочастотных колебаний по закону изменения передаваемого
сигнала.
ДОБАВИТЬ
ОПРЕДЕЛЕНИЕ ШИМ
Детектирование (или
демодуляция) – процесс выделения низкочастотных колебаний (колебаний звуковой
частоты) из модулированных колебаний высокой частоты
Ширина канала связи –
полоса частот, необходимая для передачи данного сигнала
КОЛЕБАТЕЛЬНЫЙ
КОНТУР
Электромагнитные
колебания — это колебания электрических и магнитных полей, которые сопровождаются
периодическим изменением заряда, тока и напряжения.
Простейшей замкнутой
электрической системой, где могут возникнуть и существовать свободные
электромагнитные колебания, является колебательный контур.
Колебательный
контур — это система, состоящая из катушки индуктивности и конденсатора,
включенных параллельно друг другу.
Обычно активное
сопротивление проводов катушки пренебрежимо мало (R
≈ 0)
Если конденсатор
зарядить и замкнуть на катушку, то по катушке потечет ток разряда
конденсатора. Сила тока не сразу достигает максимального значения, а
увеличивается постепенно. Это обусловлено явлением самоиндукции в катушке.
В момент, когда
конденсатор полностью разрядится, энергия электрического поля конденсатора
станет равной нулю. Энергия же тока (энергия магнитного поля катушки) согласно
закону сохранения энергии будет максимальной. Следовательно, в этот момент
сила тока также достигнет максимального значения
Несмотря на то что к
этому моменту разность потенциалов на концах катушки становится равной нулю,
электрический ток не может прекратиться сразу. Этому препятствует явление
самоиндукции. Как только сила тока и созданное им магнитное поле начнут
уменьшаться, возникает вихревое электрическое поле, которое направлено по току
и поддерживает его.
Индукционный ток,
в соответствии с правилом Ленца, теперь будет течь в ту же сторону что и
спадающий ток разряда конденсатора и перезарядит конденсатор.
В результате конденсатор
перезаряжается до тех пор, пока ток, постепенно уменьшаясь, не станет равным
нулю.
Энергия магнитного
поля в этот момент также будет равна нулю, а энергия электрического поля
конденсатора опять станет максимальной.
Когда ток
прекратится, процесс повторится в обратном направлении.
Электромагнитные
колебания в колебательном контуре сопровождаются взаимными превращениями
электрического и магнитного полей.
В реальном
колебательном контуре свободные электромагнитные колебания будут затухающими
из-за потерь энергии на нагревание проводов.
Энергия
электрического поля конденсатора (WCmax =
) в колебательном контуре переходит в
энергию магнитного поля катушки (WLmax =
) и обратно.
Поэтому эти колебания
называют электромагнитными.
Для полной энергии
системы в любой момент времени возможно записать:
WC + WL = + = + = const (учитывая, что по определению емкости С = )
Как известно, для
полной цепи e = u + iR
e = u + iR, e = ei
= -L
= - Li’ Þ - Li’ = + iR (учитывая, что С = )
i = = q’(по определению тока, как скорости изменения
заряда)
i’ = q’’
Окончательно имеем дифференциальное
уравнение колебательного контура:
- Li’ = + iR Þ lq’’ + Rq’ + = 0
Полагая, что в
идеальном случае R » 0, получим
дифференциальное уравнение:
Lq’’ + = 0 Þ
q’’ + q = 0
Решением этого
дифференциального уравнения является функция:
q = qmaxcos(ω0t +
φ) , где ω0 =
Колебания в
контуре будут гармоническими.
Величину w0
называют собственной круговой (циклической) частотой колебаний в контуре.
Она равна числу колебаний за 2π секунд:
ω0 =
Найдём связь между
периодом колебаний Т и собственной частотой контура ω0.
Значения колеблющейся
величины в моменты времени t1 и t2 = t1+T, где
Т — период колебания, согласно определению периода равны между собой:
q(t1)
= qmax cos(ω0t1 + φ)
q(t2)
= qmax cos(ω0t2 + φ) = qmax cos(ω0(t1+Т) + φ)
q(t1)
= q(t2) = qmax
cos(ω0t1 + φ) = qmax cos(ω0t1 + φ + ωТ)
Это возможно, если ω0Т = 2π, поскольку косинус - периодическая
функция с периодом 2p радиан:
T = = = 2π
Формула
Томсона:
Период
электромагнитных колебаний в идеальном колебательном контуре (т.е. в таком
контуре, где нет потерь энергии) зависит от индуктивности катушки и емкости
конденсатора и находится по формуле, впервые полученной в 1853 г. английским
ученым Уильямом Томсоном:
Т = 2π
Частота с периодом
связана обратно пропорциональной зависимостью ν = 1/Т.
Для практического
применения важно получить незатухающие электромагнитные колебания, а для этого
необходимо колебательный контур пополнять электроэнергией, чтобы
скомпенсировать потери.
Для получения
незатухающих электромагнитных колебаний применяют генератор незатухающих колебаний,
который является примером автоколебательной системы.
См.ниже «Вынужденные
электрические колебания»
СВОБОДНЫЕ
ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ В КОНТУРЕ
См.выше
«Колебательный контур»
ПРЕВРАЩЕНИЕ ЭНЕРГИИ
В КОЛЕБАТЕЛЬНОМ КОНТУРЕ
См.выше «Колебательный контур»
СОБСТВЕННАЯ ЧАСТОТА КОЛЕБАНИЙ В КОНТУРЕ
См.выше «Колебательный контур»
ВЫНУЖДЕННЫЕ ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ
ДОБАВИТЬ
ПРИМЕРЫ СХЕМ
Если в контуре, в
состав которого входят индуктивность L и емкость С, каким-то образом зарядить
конденсатор (например, путем кратковременного подключения источника питания),
то в нем возникнут периодические затухающие колебания:
u = Umax
sin(ω0t + φ) e-αt
ω0 = (Собственная частота колебаний контура)
Для обеспечения
незатухающих колебаний в состав генератора должен обязательно входить элемент,
способный вовремя подключить контур к источнику питания, — ключ или усилитель.
Для того чтобы этот
ключ или усилитель открывался только в нужный момент, необходима обратная связь
от контура на управляющий вход усилителя.
Генератор
синусоидального напряжения LC-типа должен иметь три основных узла:
- резонансный
контур
- усилитель или
ключ(на электронной лампе, транзисторе или другом элементе)
- обратную связь
Рассмотрим работу
такого генератора.
Если конденсатор С
заряжен и происходит его перезарядка через индуктивность L таким образом, что
ток в контуре протекает против часовой стрелки, то в обмотке, имеющей
индуктивную связь с контуром, возникает э. д. с., запирающая транзистор Т.
Контур при этом отключен от источника питания.
В следующий
полупериод, когда происходит обратная перезарядка конденсатора, в обмотке связи
индуктируется э.д.с. другого знака и транзистор приоткрывается, ток от
источника питания проходит в контур, подзаряжая конденсатор.
Если количество
энергии, поступившей в контур, меньше, чем потери в нем, процесс начнет
затухать, хотя и медленнее, чем при отсутствии усилителя.
При одинаковом
пополнении и расходе энергии колебания незатухающие, а если подпитка контура
превышает потери в нем, то колебания становятся расходящимися.
Для создания
незатухающего характера колебаний обычно используется следующий метод: при
малых амплитудах колебаний в контуре обеспечивается такой коллекторный ток
транзистора, при котором пополнение энергии превышает ее расход. В результате
амплитуды колебаний возрастают и коллекторный ток достигает значения тока
насыщения. Дальнейший рост базового тока не приводит к увеличению
коллекторного, и поэтому нарастание амплитуды колебаний прекращается.
ГЕНЕРАТОР
ПЕРЕМЕННОГО ТОКА
(уч.11кл.стр.131)
ЭДС рамки, вращающейся в поле
Генератор переменного
тока.
В проводнике,
движущемся в постоянном магнитном поле, генерируется электрическое поле,
возникает ЭДС индукции.
Основным элементом
генератора является рамка, вращающаяся в магнитном поле внешним механическим
двигателем.
Найдем ЭДС,
индуцируемую в рамке размером a x b, вращающейся с угловой частотой ω в
магнитном поле с индукцией В.
Пусть в начальном
положении угол α между вектором магнитной индукции В и вектором площади
рамки S равен нулю. В этом положении никакого разделения
зарядов не происходит.
В правой половинке
рамки вектор скорости сонаправлен вектору индукции, а в левой половине
противоположен ему. Поэтому сила Лоренца, действующая на заряды в рамке, равна
нулю
При повороте рамки на
угол 90о в сторонах рамки под действием силы Лоренца происходит
разделение зарядов. В сторонах рамки 1 и 3 возникают одинаковые ЭДС индукции:
εi1 = εi3 = υBb
Разделение зарядов в
сторонах 2 и 4 незначительно, и поэтому ЭДС индукции, возникающими в них, можно
пренебречь.
С учетом того, что
υ = ω a/2, полная ЭДС, индуцируемая в рамке:
εi
= 2 εi1 = ωBΔS
где ΔS
= ab
ЭДС, индуцируемую в
рамке можно найти из закона электромагнитной индукции Фарадея. Магнитный поток
через площадь вращающейся рамки изменяется во времени в зависимости от угла
поворота φ = wt между линиями магнитной индукции и вектором площади.
При вращении витка с
частотой n угол j
меняется по закону j = 2πnt, и
выражение для потока примет вид:
Φ = BDS cos(wt) = BDS cos(2πnt)
По закону Фарадея
изменения магнитного потока создают ЭДС индукции, равную минус скорости
изменения потока:
εi = - dΦ/dt = -Φ’ = BSω sin(ωt) = εmax sin(wt) .
где εmax = wBDS - максимальная ЭДС,
индуцируемая в рамке
Следовательно, изменение
ЭДС индукции будет происходить по гармоническому закону.
Если с помощью
контактных колец и скользящих по ним щеток соединить концы витка с
электрической цепью, то под действием ЭДС индукции, изменяющейся со временем по
гармоническому закону, в электрической цепи возникнут вынужденные электрические
колебания силы тока – переменный ток.
На практике
синусоидальная ЭДС возбуждается не путем вращения витка в магнитном поле, а
путем вращения магнита или электромагнита (ротора) внутри статора
– неподвижных обмоток, навитых на стальные сердечники.
Это позволяет избежать
снятия больших амплитуд напряжения и тока с помощью контактных колец.
Обмотка ротора,
создающая магнитное поле, называется – обмоткой возбуждения генератора.
Ротор, как правило,
имеет не два, а большее число пар полюсов (обозначение 2p)
Частота генерируемого
тока определяется оборотами генератора и числом пар полюсов ротора (2p)
Для увеличения
генерируемой ЭДС вместо рамки используют катушку с большим числом витков.
Напряжение,
снимаемое с выхода генератора, пропорционально количеству витков обмотки.
При подключении в
электрическую цепь генератора переменной ЭДС в цепи возникают вынужденные
электромагнитные колебания.
Переменный ток в
электрических цепях является результатом возбуждения в них вынужденных
электромагнитных колебаний.
Колебания силы тока
в цепи являются вынужденными, возникающими под воздействием приложенного
переменного напряжения.
Закон изменения
тока в нагрузке зависит от характера нагрузки.
Ток нагрузки создает
в обмотке статора генератора магнитное поле, направленное против поля ротора,
тормозящее генератор. Таким образом нагрузка на приводной двигатель
генератора определяется током нагрузки.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
|