Меню
Поиск



рефераты скачать Основы теории и технологии контактной точечной сварки

Вводимые исходные данные, рационально также разбить на три группы. Первая группа исходных данных, предназначенная для управления работой программы, естественно должна учитывать ее особенности. Вторая же и третья группы исходных данных, содержащие характеристики свариваемого материала, а также технологии и режима сварки, такие же, как и при решении этой задачи для традиционных способов точечной сварки (табл. 4.1).

В большинстве известных способов точечной сварки с обжатием периферийной зоны соединения [59…70, 245] силовое воздействие на детали задают двумя силовыми параметрами режима: усилием FСВt сжатия деталей приводом сварочной машины и усилием F0t их обжатия кольцевыми силовыми пуансонами в периферийной зоне соединения (см. рис.1.7) как неизменными, так и программированными по величине. В последнем случае их рационально задавать в виде аппроксимированных функций, например, выраженных зависимостями (4.5) и (4.6). Коэффициенты аппроксимации АFсв, ВFсв, CFсв, t1, a1, b1 и АFо, ВFо, CFо, t1, a2, b2 в этом случае водятся в исходных данных (табл. 4.3).

Усилие же сжатия на токопроводящем электроде FЭt определяется из соотношения (1.6) усилий сжатия деталей приводом сварочной машины FСВ, токопроводящими электродами FЭt и обжимными втулками F0t, которое, с учётом необходимости расчетов в дискретные моменты t процесса КТС, можно преобразовать к следующему виду:

.                                            (4.8)

Вычисление диаметра пояска dПt в фиксированный момент t, осуществляется также методом итераций путем последовательного приближения (рис. 4.3). Цикл по диаметру уплотняющего пояска dПt с уменьшением шага ΔdПj осуществляется блоками 8...12. В блоках 8...10 последовательно вычисляются значения параметров термодеформационных процессов, протекающих при КТС с обжатием периферийной зоны соединения.

Таблица 4.3

Исходные данные силового воздействия на детали при расчете диаметра уплотняющего пояска по уравнению (3.17)

пп

Параметры

Обозначение

Единица

измерения

1

Неизменное усилие сжатия приводом сварочной машины

FСВ

Н

3

Неизменное усилие обжатия периферийной зоны соединения

F0

Н

2

Данные для аппроксимации программированного усилия сжатия приводом сварочной машины

АFсвt, ВFсвt, CFсвt, t1,

a1, b1

б/р

4

Данные для аппроксимации программированного усилия обжатия периферийной зоны соединения

АFоt, ВFоt, CFоt,

t1, a2, b2

б/р


При КТС с обжатием периферийной зоны соединения не все усилие (FЭt+FОt) сжатия деталей электродными устройствами может передаваться в контур уплотняющего пояска. Частично оно может уравновешиваться усилием FДt, необходимым для сближения деталей до соприкосновения их поверхностей при наличии между ними зазоров. Кроме того, если сумма усилия FДt и усилия FУt, передаваемого в контур уплотняющего пояска от обжимных втулок меньше, чем усилие сжатия ими деталей FОt, т. е. , оно частично, на величину FКt, зависящую от цилиндрической жесткости деталей и расстояния между контурами уплотняющего пояска и обжимной втулки (см. зависимость (3.19)), которую можно определить по зависимости (3.20), преобразованной к следующему виду:

,                                        (4.9)

уравновешивается в кольцевом контакте.

Поэтому для расчётов dПt уравнение (3.17) рационально преобразовать к виду:

.

Левая часть этого равенства согласно (3.9), (3.10) и (3.21) равна усилию FCt, уравновешиваемому в площади свариваемого контакта давлением в ядре РЯt и напряжениями в уплотняющем пояске σt. Правая же его часть равна усилию , которое передаётся в контур уплотняющего пояска от воздействия на детали токопроводящими электродами FЭt и обжимными втулками F0t:

.                                   (4.10)

При итерациях по диаметру уплотняющего пояска dПt сравниваются значения  и  (блок 9). Пока выполняется условие, что , циклы по dПt продолжаются с тем же шагом ΔdПj переходом в блок 7. Если же это условие не выполняется, т. е., а (блок 10), то dПt уменьшается на ΔdПj, затем уменьшается ΔdПj (блок 11) и циклы по dПt продолжаются. Если же , циклы по dПt заканчиваются, фиксируются результаты расчётов (блок 12) и осуществляется переход в цикл по времени (блок 13). После выполнения заданного числа шагов расчетов по времени производится заданный вывод полученных результатов (блок 14) и решение задачи заканчивается.

Оценку адекватности термодеформационной модели процесса точечной сварки с обжатием периферийной зоны соединения реальному процессу формирования соединения производили так же обобщенно, как и проверку описанной выше термодеформационной модели для традиционных способов точечной сварки. Так же при сварке деталей осуществляли прерывания процесса формирования соединения и измеряли диаметр уплотняющего пояска, а затем сравнивали его значения с расчетными для тех же условий сварки и моментов формирования соединения.

Многочисленные сравнения расчетных и экспериментальных значений диаметра уплотняющего пояска для условий сварки деталей толщиной 1….4 мм из высоколегированных и углеродистых сталей, а также алюминиевых сплавов, показали, что их расхождения не превышают 10…20 %, что в определенной мере, отражает приемлемую для приближенных решений технологических задач степень адекватности термодеформационной модели процесса формирования соединения и реального процесса точечной сварки с обжатием периферийной зоны соединения [210…212, 243].

4.2. Изменение термодеформационных процессов на стадии
нагрева при традиционных способах точечной сварки


Описанные выше методики расчета основных термодеформационных процессов, протекающих в зоне сварки на стадии нагрева, предоставляют возможность определить их количественные значения в любой момент процесса формирования соединения при заданных параметрах режима сварки. Практически, это означает, что решение уравнений (3.11) или (3.17) относительно диаметра уплотняющего пояска при заданных параметрах режима сварки позволяет проводить численные эксперименты.

Моделированием процессов формирования точечных сварных соединений как при традиционных способах сварки, так и при способах сварки с обжатием периферии соединения по описанным выше методикам расчетов подтверждается существующее мнение [3, 16] о том, что формирование точечных соединений происходит по единой схеме, несмотря на изменение значимости влияния отдельных термодеформационных процессов, протекающих в зоне сварки, на формирование соединения на отдельных этапах цикла сварки, а также различия количественных их параметров. Так, во всех случаях контактной точечной сварки сохраняется временная последовательность протекания отдельных термодеформационных процессов в зоне сварки, значимость их влияния на процесс формирования соединения и характер изменения при сварке: температура металла в зоне сварки во время импульса сварочного тока, хотя и неравномерно, всегда увеличивается; среднее значение давления в свариваемом контакте, напряжения в площади уплотняющего пояска, а после начала плавления металла в свариваемом контакте и давление в ядре всегда уменьшаются по величине; разупрочнение металла в зоне сварки всегда возрастает, что сопровождается его пластическим течением и непрерывным увеличением площади свариваемого контакта [203…206, 210…212, 218, 243].

4.2.1. Изменение параметров термодеформационных процессов при  традиционных способах точечной сварки

Из всех параметров процесса точечной сварки к настоящему времени экспериментально измерено с достаточной степенью надежности только изменение в процессе формирования соединения диаметра уплотняющего пояска, размеров ядра расплавленного металла и температуры в контактах электрод–деталь. Сведения об остальных в большинстве носят предположительный характер.

Решение уравнения (3.11) термодеформационного равновесия процесса формирования соединения для традиционных способов сварки впервые (алгоритм показан на рис. 4.1) позволило рассчитать изменение в процессе КТС параметров основных термодеформационных процессов, определить их взаимовлияние и влияние на устойчивость процесса сварки. При этом установлено следующее (рис. 4.5) [203…206, 214…216, 218].

В процессе формирования точечного сварного соединения на стадии нагрева во время tСВ действия импульса сварочного тока происходит уменьшение среднего давления РСРt в контуре контакта деталь–деталь, сопровождаемое его пластическим течением и непрерывным увеличением площади (диаметра dПt ) свариваемого контакта (рис. 4.5, а). Это является следствием того, что среднее значение напряжений в контуре уплотняющего пояска σСРt, а после начала плавления металла в свариваемом контакте и давление РЯt в ядре, уменьшаются по величине. Причем, до начала плавления металла средние значения давления РСРt и напряжений σСРt в контакте деталь–деталь совпадают по величине.

Основными факторами, определяющими такое изменение напряжений в контуре уплотняющего пояска σСРt и давление РЯt в ядре, являются разупрочнение металла в зоне сварки, которое проявляется в уменьшении его сопротивления пластической деформации σДt, а также уменьшение ширины уплотняющего пояска bПt, равной bПt = (dПtdЯt)/2 (см. зависимости (3.51) и (3.59)), из-за более быстрого увеличения диаметра ядра dЯt по сравнению с увеличением диаметра dПt уплотняющего пояска.


Основным фактором, определяющим уменьшение сопротивления пластической деформации металла в зоне сварки σДt является его разупрочнение вследствие увеличения температуры ТДt (рис. 4.5, а), которое по своему влиянию не только полностью компенсирует, но и превосходит упрочняющее действие монотонно увеличивающейся в процессе формирования соединения степени пластической деформации. Кроме того, уменьшению в процессе КТС сопротивления пластической деформации металла в зоне сварки σДt способствует и уменьшение при сварке скорости пластической деформации ut.

Монотонное изменение в процессе КТС напряжений в контуре уплотняющего пояска σСРt и давления РЯt в расплавленного металла ядре не приводит к нарушению термодеформационного равновесия в площади свариваемого контакта. Оно сопровождается лишь изменением в его площади характера силового взаимодействия деталей (рис. 4.5, в).

Так, в приведенном на рис. 4.5 примере, детали в месте сварки собраны с зазором δ = 0,5 мм. Поэтому в соответствии с уравнением (3.11) усилие сжатия в площади свариваемого контакта FCt (3.21) меньше усилия сжатия деталей электродами FЭt, на величину FДt (см. зависимость (2.5)), затраченную на деформацию деталей при их сближении до соприкосновения поверхностей. В течение все процесса КТС усилие сжатия в свариваемом контакте FCt меньше усилия сжатия деталей электродами FЭt на величину FДt и в данном случае остается неизменным.

До начала плавления металла все усилие FCt сжатия в свариваемом контакте уравновешивается металлом, находящимся в твёрдой фазе. В этом случае все усилие в площади свариваемого контакта FCt уравновешивается напряжениями, интегральная сумма которых в площади уплотняющего пояска равна усилию FПt, т. е. в этот период согласно зависимостям (3.10) и (3.21) FCt = FПt.

В период после момента tНП начала плавления металла в свариваемом контакте до окончания импульса тока (при tНП < ttСВ) часть усилия сжатия в свариваемом контакте FCt уравновешивается давлением РЯt расплавленного металла в ядре, которое по его площади развивает усилие FЯt (3.9), а часть — напряжениями в уплотняющем пояске, которые по его площади составляют усилие FПt (3.10). При этом, несмотря на уменьшение давления в ядре РЯt в процессе его формирования, усилие FЯt в его площади увеличивается, что обусловлено более быстрым увеличение площади ядра по сравнению с уменьшением в нем давления. Поэтому по мере роста ядра происходит перераспределение усилий сжатия в свариваемом контакте при неизменной величине FCt: доля усилия FCt, уравновешиваемая в его площади усилием FЯt, увеличивается, а доля, уравновешиваемая в площади уплотняющего пояска усилием FПt, уменьшается на величину FЯt.

Такое взаимосвязанное изменение параметров термодеформационных процессов, протекающих в зоне сварки, и параметров силового взаимодействия деталей в площади свариваемого контакта обеспечивает устойчивое формирование соединения в условиях их непрерывного изменения при КТС.

4.2.2. Особенности термодеформационных процессов при точечной сварке с обжатием периферийной зоны соединения

Формирование сварного соединения при точечной сварке с обжатием его периферийной зоны происходит по той же схеме, что и при традиционных способах КТС. В месте с тем, особенности силового воздействия на детали при КТС с обжатием периферийной зоны соединения, которые заключаются в сжатии деталей токопроводящими электродами усилием FЭ и автономном обжатии периферийной зоны соединения кольцевыми силовыми пуансонами усилием FО (см. п. 1.2.3), при сохранении общего характера протекания основных термодеформационных процессов в зоне сварки приводят к существенному изменению количественных их параметров.

Математическое моделирование процесса КТС с обжатием периферийной зоны соединения, путем решения уравнения (3.17) термодеформационного равновесия этого процесса сварки (алгоритм показан на рис. 4.1), впервые позволило определить не только характер изменения основных термодеформационных процессов в зоне формирования соединения при этом способе сварки, но и рассчитать их количественные параметры. При этом установлено следующее (рис. 4.7) [204, 210…212, 243].


В процессе формирования точечного сварного соединения на стадии нагрева во время tСВ действия импульса сварочного тока при КТС с обжатием периферийной зоны соединения, как и при традиционных способах сварки, в зоне сварки происходит пластическое течение металла и монотонное увеличение площади (диаметра dПt) свариваемого контакта
(рис. 4.7, а). Это является следствием того, что среднее значение напряжений в контуре уплотняющего пояска σСРt, а после начала плавления металла в свариваемом контакте и давление РЯt в ядре, также уменьшаются по величине в течение действия импульса сварочного тока.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.