Меню
Поиск



рефераты скачать Основы теории и технологии контактной точечной сварки

Для практических расчетов сопротивления пластической деформации металла по формуле (3.60) в условиях КТС необходимо в любой момент процесса формирования точечного сварного соединения количественно определить степень и скорость деформации, а также температуру деформируемого металла в зоне сварки.


3.5.2 Определение степени и скорости пластической деформации
металла в зоне точечной сварки

По-видимому, в теории точечной сварки понятия степени и скорости пластической деформации металла в зоне формирования соединения определяются не совсем корректно (см. п. 2.5) и математические зависимости для расчёта их параметров не в полной мере отражают сущность этих процессов при КТС и не пригодны для решения практических задач. Ниже описана методика определения степени и скорости деформации в процессе формирования соединения [203, 215, 240], разработанная для условий КТС и вполне приемлемая для решения технологических задач.

В теориях пластичности и обработки металлов давлением, деформацией называют изменение размеров и формы рабочего тела без изменения его массы и объема. При этом, понятие «деформация» относят как к изменению размеров и формы элементарных объемов тела, так и к изменению макроскопических параметров формы и размеров. Количественное определение абсолютной, относительной либо логарифмической (истинной) деформации неизбежно связано с измерением расстояний между точками тела, в том числе и внутри его, поскольку пластическая деформация представляет собой перемещение элементарных объемов тела (точек) относительно друг друга [220, 221, 225, 226]. Однако в условиях точечной сварки сделать это экспериментально с достаточной степенью точности, используя существующие методики (см. п. 2.5.1), не представляется возможным.

Вместе с тем, в теории обработки металлов давлением известен так называемый «метод определения степени пластической деформации по смещенному объёму». Так, при деформации (осадке) цилиндра объёмом силами σ (рис. 3.27), которые распределены по его торцевым поверхностям, степень деформации ε, определяемая по смещенному объему VСМ (заштрихован), равна [221]:

.

На основании физической модели процессов макропластических деформаций при формировании точечных сварных соединений, которая была сформулирована выше в п. 2.5.2, процесс пластической деформации металла зоны сварки на стадии нагрева может быть уподоблен описанному выше процессу деформации цилиндра при его осадке (рис. 3.28). Это можно сделать на основании результатов экспериментальных исследований пластических деформаций металла в зоне сварки, в частности приведенных в разделе 2.5.2 и в работе [204], если физическую модель (см. рис. 2.32) несколько идеализировать, сделав следующие допущения (рис. 3.28, а):

-      пластические деформации металла при КТС локализованы в объеме металла зоны сварки Vt, ограниченном наружными поверхностями свариваемых деталей и цилиндрической поверхностью, образующей которой является контур L1, а направляющей — линия, на 10...18 % выходящая за контур уплотняющего пояска:  (см. зависимость (3.58))

-      зона пластических деформаций Vt вне контура L1 окружена жесткой оболочкой, так как радиальные деформации металла в относительно узком (вследствие большого градиента температуры) поясе VУП между контурами L1 и L2, находящегося в упругопластическом состоянии, а также окружающего холодного металла VУ вне контурами L1 и L2, который деформируется только упруго, незначительны и ими можно пренебречь;

-     
осевое пластическое течение (выдавливание) металла, формирующее уплотняющий поясок и являющееся причиной образования вмятин на поверхности электродов, вне контуров контактов деталь–деталь и электрод–деталь отсутствует.

В любой дискретный момент времени t процесса формирования соединения при КТС на цилиндрический пластически деформируемый объем Vt металла зоны сварки, со стороны жесткого кольца VУ холодного металла, который деформируется только упруго, через относительно узкий пояс металла VУП, находящегося в упругопластическом состоянии, действуют радиальные напряжения σr. В результате этого при КТС пластическое течение металла возможно в основном лишь в осевом направлении. Перемещение основного объема деформируемого металла, вследствие наличия осевого градиента температуры, происходит в направлении свариваемого контакта (см. п. 2.5.2). При этом элементарные объемы металла при его пластическом течении в зоне сварки перемещаются так же, как при деформации цилиндров 1 и 2, сжатых силами σ1, радиальными напряжениями σr, которые распределены по боковым их поверхностям (рис. 3.28, б). Таким образом, пластическое течение элементарных объемов металла в зоне сварки при КТС и при деформации цилиндров, напряжениями σr, распределенными по боковым их поверхностям, происходит так же, как при описанной выше пластической деформации цилиндра при его осадке (см.
рис. 3.27), но только в обратном направлении.

Степень деформации металла в зоне сварки εt, в любой момент времени t процесса формирования соединения при при контактной точечной сварке, на основании сказанного выше (см. рис. 3.28, б) можно определить по зависимости (рис. 3.29):

,                                         (3.61)

где VСМt и Vt — смещенный и деформируемый объемы в момент времени t.

Физическая модель процессов макропластических деформаций при формировании точечных сварных соединений (см. п. 2.5.2) и сделанные выше допущения, позволяют определить смещенный объем металла при КТС  (рис. 3.29). В любой момент t процесса формирования точечного сварного соединения смещенный объем металла  равен сумме приращения  деформируемого объема Vt вследствие температурного расширения, включая и нагрев выше температуры плавления в объеме ядра VЯt, увеличения  объема металла ядра VЯt при его плавлении, а также объемов металла  и , вытесняемых при вдавливании электродов в детали на глубину c1t и c2t:

.                             (3.62)

Элементарные объемы dV в разных областях зоны сварки, ограниченной контуром L1, испытывают различное тепловое воздействие, а также претерпевают разные агрегатные превращения. С учетом этого в любой момент t процесса КТС на стадии нагрева приращение  смещенного объема  из-за температурного расширения металла деформируемого объема Vt, и приращение  смещенного объема  из-за увеличения объема металла ядра VЯt при его плавлении могут быть определены по следующим интегральным зависимостям:

,                              (3.63)

,                                          (3.64)

где для момента времени t, βT(Т) — температурный коэффициент объемного расширения; Т(z,r,φ,t) — функция, описывающая изменение температуры в зоне сварки; β* – коэффициент объемного расширения при плавлении металла, примеры значений которого показаны в табл. 3.3.

Приращения смещенного объема  из-за объемов металла  и , смещаемых при вдавливании электродов в детали, для момента времени t могут быть определены как объемы геометрических фигур по следующим интегральным зависимостям:

,                               (3.65)

,                               (3.66)

где для момента времени t,  и  — функции, описывающие геометрию рабочих поверхностей электродов и их положение относительно поверхностей свариваемых деталей; с1t и с2t – глубины вдавливания электродов в поверхности деталей; St и St — площади соответствующих контактов электрод–деталь.

Подставив зависимости (3.63…3.66) в (3.62) получаем интегральное выражение, которое позволяет определить смещенный объем металла VСМt в любой момент процесса точечной сварки:

.          (3.67)

Выразив деформируемый объём Vt интегральной зависимостью

и подставив ее совместно с (3.67) в формулу (3.61), получаем интегральное выражение, которое позволяет определить степень пластической деформации металла в зоне формирования точечного сварного соединения, в любой момент времени t на стадии нагрева [203, 240]:

. (3.68)

Для точных расчетов степени деформации при конкретных условиях точечной сварки необходимо в интегральную зависимость (3.68) подставить подынтегральные функции. А именно, функции, которые описывали бы изменение в процессе КТС: объема деформируемого металла; изменения в нем температуры; объема расплавленного металла; объема металла, вытесняемого электродами; зависимость температурного коэффициента объёмного расширения от изменения температуры. Кроме того, пределы интегрирования необходимо выразить через функции, которые описывали бы поверхности объема деформируемого металла Vt и объема ядра расплавленного металла VЯt, а также функции и , описывающие геометрию рабочих поверхностей электродов и их положение в момент времени t относительно поверхностей свариваемых деталей. Учитывая, что вышеназванные функции весьма сложны, а некоторые вообще не определены, то точные аналитические расчеты значений степени пластической деформации по зависимости (3.68) затруднительны, а для решения приближенных технологических задач точечной сварки может быть и не рациональны.

Приближенные технологические расчеты по зависимости (3.68) можно упростить, если кроме допущений, описанных выше, принять и следующие:

-      зона сварки осесимметрична;

-      детали имеют одинаковые теплофизические свойства и одинаковую толщину, т. е. зона сварки симметрична относительно плоскости свариваемого контакта;

-      температурный коэффициент объемного расширения металла βT не зависит от градиента температуры по координатам и принимается по ее усредненной величине, т. е. ;

-      электроды имеют одинаковую геометрию рабочих поверхностей и вдавливаются в поверхности деталей на одинаковую глубину, т. е.:

,  и .

Тогда, приняв допущения, что зона интенсивных пластических деформаций при КТС ограничена поверхностями деталей в контактах электрод–деталь и цилиндрической поверхностью, образующая которой параллельна оси электродов, а направляющей является контур контакта деталь–деталь, интеграл в зависимости (3.68), который определяет объем деформируемого металла Vt, при толщине деталей s и диаметре уплотняющего пояска dПt будет равен:

.                    (3.69)

Сделанные допущения, в частности, о том, что температурный коэффициент объемного расширения металла βT не зависит от температуры, т. е. βT = const, позволяют упростить вычисление первого тройного интеграла (в квадратных скобках) в зависимости (3.68), который определяет приращения  деформируемого объема металла Vt, вследствие его температурного расширения (зависимость 3.63). Тогда, учитывая, что зона интенсивных пластических деформаций при КТС осесимметрична по координате r и симметрична относительно плоскости свариваемого контакта по координате z, этот интеграл можно преобразовать к следующему виду:

.           (3.70)

Очевидно, что тройной интеграл в круглых скобках аналогичен зависимости (3.69), а выражение с двойным интегралом в квадратных скобках аналогично зависимости (3.44), если в нее подставить следующие пределы интегрирования: z1 = 0, z2 = s, r1 = 0, r2 = dПt /2. Тогда, с учетом (3.44) и (3.69), а также того, что температурный коэффициент объемного расширения βT и температурный коэффициент линейного расширения αT связаны между собой следующим соотношением: βT = 3αT [123], зависимость (3.70) можно преобразовать к следующему виду:

.               (3.71)

Допущение об осесимметричности зоны сварки значительно упрощает вычисление и второго тройного интеграла (в квадратных скобках) в зависимости (3.68), который определяет приращение  объема металла ядра при его плавлении. В этом случае объем ядра в любой момент его формирования можно рассчитать как объем тела вращения. Объем ядра VЯt (рис. 3.30) можно представить как объем тела, ограниченного изотермой температуры плавления, выраженной функцией , при вращении ее вокруг координаты z. Тогда тройной интеграл в зависимостях (3.64) и (3.68) можно преобразовать следующим образом [208]:

,            (3.72)

где z1 и z2 — координаты точек, в которых изотермы температуры плавления пересекают ось электродов.

Функцию, выражающую зависимость координаты r от координаты z в уравнении изотермы температуры плавления: , можно получить из выражения (3.39). После преобразований эта функция может быть записана в следующем виде:

.

Подставив ее в зависимость (3.72) и вычислив интеграл при переменных пределах интегрирования  и , в которых значение высоты ядра hЯt выражено формулой (3.40), получаем:

. (3.73)

В практике точечной сварки наиболее распространены электроды (рис. 3.31) со сферической рабочей поверхностью (рис. 3.31, а), а также конические (рис. 3.31, б) и цилиндрические (рис. 3.31, в) электродами с плоскими рабочими поверхностями.

Все они являются телами вращения, а потому объемы , вытесняемые электродами при их вдавливании в поверхности деталей, могут быть определены не только по зависимостям (3.65) или (3.66), но и гораздо проще по зависимости (3.72). Однако и в этом нет необходимости, так как общеизвестны формулы, согласно которым вытесняемые объемы равны:

-      при сферической рабочей поверхности электрода

,       (3.74)

-      при конической форме электрода

 ,    (3.75)

-      при цилиндрической форме электрода

,                        (3.76)

где ct — глубина вдавливания электродов в момент времени t; RЭ — радиус сферической рабочей поверхности электрода; dЭ — диаметр плоской рабочей поверхности электрода; dOt — диаметр отпечатка (контакта) электрод-деталь в момент времени t.

Вторым слагаемым в зависимости (3.74) можно пренебречь потому, что глубина вдавливания электродов при КТС обычно не превышает 10...20 % от толщины s свариваемых деталей, т. е. , а радиусы электродов со сферической рабочей поверхностью , при которых  и практически не влияет на результат расчета объема . По этой же причине можно пренебречь разностью между dЭ и dOt в зависимости (3.75), так как при  и , т. е. при , и определять объем  по зависимости (3.76) как при цилиндрическом, так и коническом электродах.

Наиболее сложной задачей при расчетах вытесненного электродами объема  по зависимостям (3.74) и (3.76) является определение глубины вдавливания электродов ct в процессе формирования соединения. В настоящее время можно прогнозировать лишь качественный характер изменения этого параметра. Определить же значения ct расчетным путем в процессе КТС с учетом напряженно-деформированного состояния металла области зоны сварки, прилегающей к электроду, пока не удается из-за сложности протекающих там термодеформационных процессов. Поэтому в данной методике значения ct приближенно определяются через диаметр контакта электрод–деталь. С точностью до 0,01 % значения ct можно выразить через диаметр отпечатка dо (контакта электрод–деталь) при сварке электродами со сферическими рабочими поверхностями [84]: .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.