Меню
Поиск



рефераты скачать Разработка системы электроснабжения механического цеха

Принимаются к установке на КТП два трансформатора типа ТМЗ-630/6.

Коэффициент загрузки трансформатора, о.е., в максимальном режиме при условии полной компенсации реактивной мощности,


Кз=Рр/Sном.тр,


Трансформатор №1

Кз=320,537/630=0,509;

Трансформатор №2

Кз=290,502/630=0,461.

Коэффициент загрузки в аварийном режиме при отключении одного трансформатора,о.е.,


,


=0,866,

что меньше допустимого значения 1,3.


2.4 Выбор сечений кабельных линий напряжением 6 кВ, питающих

КТП


Выбор сечений производится по экономической плотности тока и проверяется по условию нагрева.

Экономическое сечение определяется из выражения



где IP – расчетный ток линии в нормальном режиме работы, А,


 ,


 ;

jэк – экономическая плотность тока /3/, А/мм2;

.

Выбирается кабель марки ААБ 3´50 (Iдоп = 155А – кабель проложен в земле).

Проверка по нагреву:

Расчетный ток в линии в послеаварийном режиме, А,

Проверка выбранного кабеля по нагреву в послеаварийном режиме:

Все условия выполняются


2.5 Компенсация реактивной мощности


Компенсация реактивной мощности на шинах 0,4 кВ подстанции выполняется исходя из двух условий: потребление реактивной мощности ниже экономического значения и допустимая загрузка трансформаторов.

Предприятию задано экономическое значение коэффициента реактивной мощности на шинах 0,4 кВ подстанции tgφэ=0,3. Принимается, что при соблюдении данного значения, предприятие в целом не превышает экономической величины потребляемой реактивной мощности.

Первое условие.

Необходимая мощность компенсирующих устройств, квар,


,


где tgφф – фактический коэффициент реактивной мощности, о.е.,

tgφф=Qp/Pp;

Трансформатор №1

tgφф=328,051/320,537=1,023;

=231,890;

Трансформатор №2

tgφф=237,434/290,502=0,817;

=150,189.

Второе условие.

Коэффициент загрузки трансформаторов в расчетном режиме до компенсации, о.е.,


,


Трансформатор №1

=0,728;

Трансформатор №2

=0,595.

Реактивная мощность, которую можно передавать через трансформатор в нормальном режиме работы, квар,


,


Трансформатор №1

=272,416;

Трансформатор №2

=304,135.

Необходимая мощность компенсирующих устройств, квар,

=Qp-Qпер,


Трансформатор №1

=328,051-272,416=55,635;

Трансформатор №2

=237,434-304,135=-66,701.

Из мощностей компенсирующих устройств, выбранных по двум условиям, принимается наибольшая. Устанавливаются комплектные компенсирующие устройства ККУ – 0,38 -240 для секции РУ НН первого трансформатора и ККУ – 0,38 —160 – для второго.

Коэффициент загрузки трансформатора после компенсации реактивной мощности, о.е.,


,


Трансформатор №1

=0,527;

Трансформатор №2

=0,477.


2.6 Выбор осветительной сети. Электротехнический расчет


В осветительных установках общего освещения применяется преимущественно напряжение 380/220 В переменного тока при заземленной нейтрали. Так как расчёт ведётся только для общего освещения, то для других видов освещения расчёт не выполняется.

Схема питания осветительной установки состоит из питающих и групповых линий. К питающим линиям относятся участки сети от распределительных устройств подстанций до групповых щитков. К групповым линиям относятся участки сети от групповых щитков до светильников.

Питающие линии выполняются четырёхпроводными, а групповые в зависимости от нагрузки и протяженности бывают двухпроводными, трёхпроводными и четырёхпроводными. Питающие линии осветительной сети могут быть выполнены по радиальной, магистральной или смешанной схемам.

Групповые линии могут быть как однофазными, так и трехфазными. Однофазные групповые линии целесообразно прокладывать для помещений небольшой площади, а также для средних и крупных помещений, освещаемых не слишком часто установленными светильниками с ДРЛ и ЛН небольшой мощности до 150-200 Вт и люминесцентными светильниками. Трехфазные групповые линии экономичны в больших помещениях, освещаемых мощными светильниками с ЛН 500-1000 кВт или лампами ДРЛ.

Групповые щитки необходимо располагать ближе к центру осветительных нагрузок и в местах, доступных для обслуживания.

Для светильников аварийного освещения устанавливается отдельные щитки, которые присоединяются к сети, не зависящей от рабочего освещения. При этом освещенность, создаваемая светильниками аварийного освещения, входит в общий баланс освещенности производственного помещения.

Согласно вышеприведенным рекомендациям питающие линии выбираются четырёхпроводными, а групповые – двухпроводными. К РУ НН КТП присоединяется магистральный щит освещения (МЩО), от которого отходят питающие линии щитов освещения (ЩО), выполненные по смещанной схеме.

Сечение проводников осветительной сети определяется по допустимой потере напряжения. В тех случаях, когда рассчитывается разветвленная сеть, то есть когда имеются трехфазные и однофазные ответвления, сечение вычисляется по формуле, мм2,


,


где åМ – сумма моментов рассчитываемого и всех последующих по направлению потока энергии участков с тем же числом проводов в линии, что и рассчитываемый участок, кВт·м,

åm – сумма моментов всех ответвлений, питаемых через рассчитываемый участок с отличным числом проводников в линии, кВт×м;

a – коэффициент приведения моментов, когда ответвления имеют иное число проводов, чем рассчитываемый участок /3/, о.е.;

 – коэффициент, зависящий от системы сети, рода тока, материала проводника /3/, о.е.;

 – допустимая потеря напряжения осветительной сети /2/, %.

Момент нагрузки i-ого участка сети, кВт·м,


,


где Ppi – расчетная мощность i-ого участка сети, кВА;

Lпрi – приведенная длина i-ого участка сети, м;


Lпрi=Loi+Lpi,


где Loi - длина i-ого участка до распределенной нагрузки, м;

 Lpi - длина распределенной нагрузки i-ого участка, м;

Схема осветительной сети представлена на рисунке 2.3.

В качестве проводников осветительной сети для питающих линий используется четырехжильный кабель марки АВВГ, для групповых линий – двухжильный марки АВВГ.

Пример расчёта приводится для линии МЩО –ЩО1.

Сумма моментов, кВт·м,

;

Сечение проводника, мм2,

.

Полученное значение округляется до стандартного мм2.

Проверка выбранного кабеля по допустимому длительному току, А,



где Iдоп – допустимый длительный ток на кабели данного сечения /1/, А,

 Iдоп=17,48 А;

 Iр - расчетный ток в линии, А,


Условие выполняется.

Действительная потеря напряжения на участке 1-2, %,


,

.

Допустимая потеря напряжения на оставшихся участках, %,


,


.

Дальнейший расчёт выполняется аналогично, результаты расчёта сводятся в таблицу 2.3.

Прокладка трасс проводников системы освещения выполняется на лотках и по строительным конструкциям на высоте, зависящей от типа помещения и наличия производственных конструкций.

Щиты освещения располагаются на колоннах на высоте 1,5 м от пола. Расположение ЩО показано на рисунке 2.1.

 

2.7 Выбор схемы и конструктивное выполнение внутрицехового

электроснабжения напряжением до 1 кВ


Основной тенденцией в проектировании электроснабжения является сокращение протяженности сетей низшего напряжения путем максимального приближения высшего напряжения (трансформаторной подстанции) к потребителям электроэнергии.

Сети напряжением до 1000 В подразделяются на питающие, прокладываемые от трансформаторной подстанции или вводного устройства до силовых пунктов, и распределительные, к которым присоединяются ЭП. В комплекс внутрицехового электроснабжения входят питающие и распределительные линии, РП напряжением до 1000 В, аппаратура коммутации и защиты сетей и ответвлений к отдельным ЭП. Питающие и распределительные сети могут быть выполнены по радиальным, магистральным и смешанным схемам.

Радиальные схемы наиболее часто используются для питания отдельных относительно мощных ЭП (двигатели компрессорных и насосных установок, печи и т.д.), а также в случаях, когда мелкие по мощности ЭП распределяются по цеху неравномерно и сосредоточены группами на отдельных участках (ремонтные мастерские, отдельные участки с непоточным производством и т.п.). К достоинствам радиальных схем относятся: высокая надежность питания (выход из строя одной линии не сказывается на работе потребителей, питающихся от других линий), а также возможность автоматизации переключений и защиты.

Магистральные схемы применяются для питания ЭП, обслуживающих один агрегат и связанных единым технологическим процессом, когда прекращение питания любого из этих ЭП вызовет необходимость прекращения работы всего технологического агрегата. Магистральные схемы находят широкое применение для питания большого числа мелких ЭП, распределенных относительно равномерно по площади цеха (металлорежущие станки в цехах механической обработки металлов и другие потребители).

На практике наибольшее распространение находят смешанные схемы, сочетающие в себе элементы радиальных и магистральных схем. Смешанные схемы характерны для крупных цехов металлургических заводов, для литейных, кузнечных и механосборочных цехов машиностроительных заводов.

Проектирование цеховых сетей во всех случаях должно выполняться на основе хорошего знания технологии проектируемого цеха, условий окружающей среды и степени ответственности отдельных ЭП.

Питающая сеть выполнена четырехжильным кабелем марки АВВГ, проложенным открыто по стенам и конструкциям, по смешанной схеме.

Распределительная сеть проектируется по радиальной схеме. Линии выполнены четырехжильным кабелем марки АВВГ, проложенным в стальных трубах в полу участков и отделений цехов.


2.7.1 Выбор сечений проводников питающей сети

Питающая сеть выполнена по смешанной схеме с помощью кабелей марки АВВГ. Расположение силовых пунктов (РП) и трасс кабельных линий приводится на рисунке 2.4.

Сечение кабелей цеховых сетей напряжением до 1кВ выбирается сравнением расчётного тока линии с допустимым длительным током принятых марок проводов и кабелей с учётом условий их прокладки и температуры окружающей среды.

Должно выполняться условие


,


где Iр – расчётный ток линии, А;

Iдоп – допустимый длительный ток на кабели данного сечения, А,

,

где – допустимый табличный ток для трёхжильных кабелей /3/, А;

0,92 – коэффициент, учитывающий ток для четырёхжильных кабелей, о.е.;

Кп – поправочный коэффициент на условия прокладки, о.е.;


 ,


где К1 – поправочный коэффициент, зависящий от температуры окружающей среды /3/, о.е.;

К2 – поправочный коэффициент на число работающих кабелей /3/, о.е.;

К3 – поправочный коэффициент на способ прокладки, равный 1, о.е.

Выбранные сечения проводов, кабелей и шин проверяют по допустимой потере напряжения. Делается это с целью обеспечения нормального напряжения на зажимах ЭП в пределах допустимых отклонений.

Нормами величина потерь напряжения в сети до 1 кВ не установлена. Однако, зная напряжение на шинах трансформаторной подстанции и подсчитав потерю напряжения в сети, можно определить отклонение на зажимах электроприёмников и сравнить с допустимыми значениями отклонения напряжения, которые приняты:

-                     для освещения ±5%;

-                     для электродвигателей -5%, +10%;

-                     для дуговых сталеплавильных печей и печей сопротивления ±5%;

-                     для сварочных агрегатов не ниже –(8…10)%;

-                     для кранов не ниже –(8…9)%.

Потеря напряжения в сети определяется по формуле, %,


,


где Iр – расчётный ток линии на данном участке, А;

L – расстояние от точки питания до точки приложения равнодействующей нагрузки, км;

rо, xо – активное и индуктивное сопротивление 1 км линии /1/, Ом/км;

cosj – коэффициент мощности данного участка, о.е.;

Uл – линейное напряжение, равное 380 В.

Выбор сечений проводников в сетях напряжением до 1 кВ, прокладываемых в помещениях, тесно связан с выбором плавких вставок и уставок расцепителей автоматических выключателей. При защите линий предохранителями или автоматами сечения выбираемых проводов и кабелей обязательно должны быть согласованы с номинальными токами плавкой вставки или токами уставки автомата, защищающими данный провод или кабель по /3/. Расчет сетей на потерю напряжения должен обеспечить необходимый уровень напряжения на зажимах ЭП и, как следствие, необходимый момент вращения электродвигателя или требуемую освещенность от источника света.

Ниже в качестве примера рассмотрен выбор сечения питающей сети КТП – РП1.

Расчётный ток, А,


,


где  для СП-4 берутся из таблицы 2.1;

.

Для прокладки принимаются кабель с алюминиевыми жилами сечением 35 мм2.

Для выбранных кабелей:

А;

Iдоп = 90·0,92 = 82,8 А;

Для открытой прокладки одного кабеля и при расчетной температуре воздуха 25оС Кп=1;

72,928 < 82,8.

Условие выполняется.

Далее определяются cosj и sinj нагрузки данной КЛ, о.е.,


,


;

.

Принимается кабель АВВГ 3x35+1x16, который имеет следующие параметры: r0 = 0,894 Ом/км, x0 = 0,088 Ом/км.

Потеря напряжения в линии, %,

.

Расчёт для остальных линий производиться аналогично, результаты расчёта сводятся в таблицу 2.4.

 

2.7.2 Выбор кабеля для конденсаторных установок

Выбор кабеля на линию КТП – КУ производится по зарядному току КУ, А,


,


Трансформатор №1

.

Принимаются два параллельно работающих кабеля марки АВВГ 3x185+1x95 c суммарным допустимым током Iдоп = 2·248,4 = 496,8 А.

Трансформатор №2

.

Принимаются два параллельно работающих кабеля марки АВВГ 3x120+1x70 c суммарным допустимым током Iдоп = 2·184 = 368 А.


2.7.3 Выбор сечений проводов распределительной сети

Выбор сечений проводников распределительной сети производится для силовых пунктов РП-2, РП-3, РП-15, РП-18.

Распределительные сети выполнены по радиальным схемам, кабелем марки АВВГ. Прокладка в цехах выполняется в стальных трубах в полу помещений. Расположение оборудования и трасс проводов распределительной сети показаны на рисунке 2.5.

Расчётный ток электроприёмника, А,


,


где Рном – номинальная активная мощность станка, кВт;

cosjн – номинальный коэффициент мощности станка, о.е.;

η – КПД станка, о.е.

Выбор сечений ведётся по условию


,


где Iдоп – допустимый длительный ток провода данного сечения, А,

,

где – допустимый табличный ток для четырёх одножильных проводов /3/, А;

Пример выбора сечения проводов для линии от РП-3 к фуговальному станку:

Расчётный ток станка, А,

.

Принимается кабель с алюминиевыми жилами сечением 2,5 мм2.

Для выбранных проводов:

Iдоп = 0,92·19 =17,48 А;

3,069 < 1·17,48.

Условие выполняется.

Потеря напряжения в линии, %,

Результаты выбора сечений остальных линий сводятся в таблицу 2.5.

Из таблицы 2.5 видно, что наиболее электрически удалённым электроприёмником является лифт, присоединенный к РП-18.

Напряжение на зажимах наиболее удалённого от КТП приемника, %,


Uдв = Uх – DUТ – DUc,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.