Меню
Поиск



рефераты скачать Химия отрасли

Ход анализа. По 10 см3 элюата, полученного в работе п. 12.1, помещают в 2 колбы объемом 50 см3. В колбу I добавляют 1 см3 1 М раствора H2SO4, 2,5 см3 0,05 М раствора H2SO4 и 0,5 см3 раствора глицерина. В колбу II (контрольный раствор) помещают 1 см3 1 М раствора H2SO4, 2,5 см3 йодной кислоты, дают постоять 15 мин до полного разрушения винной кислоты, добавляют 0,5 см3   10 %-ного раствора глицерина для удаления избытка периодата и оставляют на 2 мин. Добавляют сначала в колбу II, а потом в колбу I по 2,5 см3 раствора метаванадата аммония и измеряют ровно через 90 с оптическую плотность раствора в колбе I против контрольного раствора при длине волны 490 нм в кювете толщиной 5 мм.

Концентрацию винной кислоты определяют по калибровочному графику с учетом разбавления при обработке анионитом (разбавление в данных условиях определения равно 5).

Построение калибровочного графика. 10, 20, 30, 40 и 50 см3  стандартного раствора винной кислоты пропускают через ионообменные колонки, собирая по 50 см3 элюата. Растворы содержат винной кислоты соответственно 0,1, 0,2; 0,3; 0,4; 0,5 г/дм3. Отбирают 2 раза по 10 см3 каждого из элюатов и анализируют, как указано выше. Строят график зависимости оптической плотности от концентрации винной кислоты.

Контрольные вопросы:

1.     Дайте характеристику строения и свойств изомеров винной кислоты.

2.     Роль винной кислоты и ее солей в виноделии.

3.     На чем основан калориметрический метод определения содержания винной кислоты?


12.3. Определение массовой концентрации молочной кислоты

Молочная кислота НООС–СНОН–СН3 относится к одноосновным алифатическим оксикислотам винограда и вина. Основное количество молочной кислоты образуется в процессе яблочно-молочного брожения, которое позволяет смягчить резкий вкус «зеленой» кислотности молодых вин. Малокислотные столовые вина с остаточным сахаром, а также крепкие и десертные вина иногда подвергаются молочнокислому брожению, которое сопровождается повышением содержания молочной и летучих кислот. Заболевание вина сопровождается появлением «квашенных» тонов и вкуса молочной сыворотки, иногда «мышиного» привкуса. Концентрация молочной кислоты в белых винах может достигать 2,5 г/дм3, в красных - 4,5 г/дм3.

Принцип метода. Метод основан на окислении молочной кислоты сульфатом церия (IV) в ацетальдегид, который, реагируя с пиперидином и нитропруссидом натрия, дает окрашенный продукт, определяемый колориметрически.

Оборудование. Фотоэлектроколориметр, пробирки с притертой пробкой объемом 25 см3; водяная баня с термостатом на 65°С.

Реактивы. Сульфат церия Ce(SO4)2 4H2O,  0,1 М раствор в серной кислоте: 40,431 г Ce(SO4)2  · 4H2O растворяют в 350 см3 1 М (2 н) H2SO4 в мерной колбе объемом 1 дм3 и доводят до метки; пиперидин: 200 см3 пиперидина разбавляют водой до 1 дм3 (готовят за 3-4 дня до применения); нитропруссид натрия, 0,4% раствор: 1 г реактива растворяют в воде в мерной колбе объемом 250 см3 (гото­вят перед применением); молочная кислота, 1 М раствор.

Ход анализа. К 5 см3 элюата, полученного в работе 12.1, наливают в пробирку объемом 25 см3, добавляют 5 см3 раствора сульфата церия, закрывают и оставляют на 90 мин при комнатной температуре. Затем добавляют 5 см3 раствора пиперидина, размешивают, фильтруют через складчатый фильтр. К 5 см3 фильтрата добав­ляют 5 см3 раствора нитропруссида натрия. Размешивают и переносят сразу в кювету толщиной 1 см для колориметрирования. Интенсивность окраски опре­деляют при длине волны 570 нм в кювете толщиной 0,5 см против воды. Мак­симальная окраска достигается через 60-90 с. За это время делают 2-3 замера оптической плотности. Из значения максимальной плотности окраски вычита­ют значение оптической плотности контрольного опыта (вместо 5 см3 элюата берут 5 см3 раствора сульфата натрия, анализируют в тех же условиях, что и элюат).

Содержание молочной кислоты (в г/дм3) определяют по калибровочному графику с учетом разбавления пробы при обработке (разбавление равно 5).

Построение калибровочного графика. В мерную колбу объемом 100 см3 наливают  1 см3 1 М раствора молочной кислоты и доводят 7,1% раствором сульфата натрия до метки (рабочий раствор). В мерные колбы объемом        50 см3 помещают по 2,5; 5,0; 7,5; 10,0; 12,5 и   15 см3 рабочего раствора и доводят ра­створом сульфата натрия до метки. Концентрация молочной кислоты в раство­рах составляет 0,045; 0,090; 0,135; 0,180; 0,225; 0,270 г/дм3. Из каждой колбы отбирают по 5 см3 и анализируют, как описано ранее. Строят график зависимо­сти оптических плотностей от концентраций.

Примечание. Вина, содержащие более 250 мг/дм3 диоксида серы, могут содер­жать некоторое количество альдегидсернистой кислоты, которая определяется так же, как молочная кислота. В этом случае в результат определения необходимо внести по­правку. Для этого 15 см3 элюата смешивают в пробирке с притертой пробкой с 5 см3 ацетата натрия массовой концентрации 27 г/100 см3 и 2 см3 раствора H2SO4 (77,5 мл H2SO4 доводят до 100 см3 водой). Затем добавляют 5 см3 раствора нитропруссида на­трия (2 г/100 см3) и 5 см3 10% раствора пиперидина. После смешивания измеряют оптическую плотность при соблюдении условий, описанных для измерения молочной кислоты. По этой величине на калибровочном графике находят концентрацию В (г/дм3) молочной кислоты совместно с альдегидсернистой кислотой. Если L' - содержа­ние молочной кислоты в вине без корректировки, то реальное содержание молочной кислоты (L, г/дм3) составит

L = L' –  0,4 В.

Контрольные вопросы:

1.     Источники образования молочной кислоты в винах;

2.     Роль молочной  кислоты в виноделии;

3.     На чем основан метод определения содержания молочной кислоты?


12.4. Определение массовой концентрации яблочной кислоты

Яблочная кислота относится к многоосновным оксикислотам, содержит асим­метрический углеродный атом. В процессе созревания винограда количество ее уменьшается и в период физиологической зрелости ягод составляет         2–5 г/кг. В процессе спиртового брожения концентрация яблочной кислоты снижается вслед­ствие ее потребления дрожжами. Молочнокислые бактерии сбраживают яблоч­ную кислоту в молочную, при этом происходит снижение содержания титруемых кислот и повышение рН, формирование мягкого гармоничного вкуса вин. Концен­трация яблочной кислоты в винах не превышает 5 г/дм3.

Значительное количество  яблочной кислоты содержат незрелые ягоды: до 15 г на 1кг винограда. Яблочная кислота участвует в дыхательных процессах  и к моменту достижения технической зрелости ее содержание снижается до 2–5 г на 1кг. В северных районах виноградарства, а также при холодной  погоде  осенью  в  южных районах виноград может быть излишне кислым из-за избытка яблочной кислоты. Столовые вина из такого винограда  имеют привкус так называемой "зеленой кислотности".  Под действием дрожжей и бактерий при благоприятных условиях происходит биологическое кислотопонижение,  связанное  с  превращением яблочной кислоты в слабо диссоциированную молочную кислоту.  Применяют также химические  методы нейтрализации  избыточного  количества  яблочной кислоты в виноградном сусле или вине.

Принцип метода. Метод основан на реакции взаимодействия яблочной кислоты с хромотроповой и серной кислотами, вследствие чего образуется комплекс желто-зеленого цвета, интенсивность окраски которого определяется колориметрически.

Оборудование. Фотоэлектроколориметр, пробирки с притертой пробкой объемом  25 см3.

Реактивы. Серная кислота концентрации 96% мас. и 86% мас; динатриевая соль хромотроповой кислоты (хромотроповая кислота – это 1,8–ди–оксинафталин–3,6–дисульфокислота), 5% водный раствор (готовят непосредственно перед определением, хранят в темной склянке); стандартный раствор DL- или L- яблочной кислоты (1 мг/см3): 500 мг яблочной кислоты растворяют в мерной колбе объемом 500 см3; сульфат натрия, 7,1%-ный раствор.

Техника определения. 1 см3 элюата, полученного в работе 12.1, помещают в пробирку с притертой пробкой, добавляют 1 см3 раствора соли хромотроповой кислоты и 10 см3 96% H2SO4, размешивают и погружают в кипящую водяную баню на 20 мин. Быстро охлаждают до 20°С и точно через 90 мин определяют оптическую плотность раствора. Все операции с момента прибавления динатриевой соли хромотроповой кислоты следует проводить в затемненном месте. Колориметрируют при длине волны 420 нм в кювете толщиной 10 мм.

Раствор сравнения готовят так же, заменяя 1 см3 элюата на такое же количество 7,1%-ного раствора Na2SO4 и 96% серную кислоту - на 86%.

Концентрацию яблочной кислоты определяют по калибровочному графику. Полученный результат умножают на разбавление (в данных условиях разбав­ление равно 5).

Построение калибровочного графика. Через 6 ионообменных колонок, заполненных анионитом, пропускают 5, 10, 15, 20, 25 и 30 см3 стандартного раствора яблочной кислоты и выполняют все операции по промывке и элюированию. По 1 см3 элюатов отбирают в пробирки и анализируют, как указано ранее. Строят график зависимости оптической плотности от концентрации яблочной кислоты. Концентрация элюатов соответствует концентрации яблочной кислоты 0,1; 0,2; 0,3; 0,4; 0,5; 0,6 г/дм3 .

Контрольные вопросы:

1.     Источники образования яблочной кислоты в винах;

2.     Роль яблочной  кислоты в виноделии;

3.     На чем основан метод определения содержания яблочной кислоты?


12.5. Определение массовой концентрации лимонной кислоты

Лимонная кислота НООС–СН2–С(СООН)(ОН)–СН2–СООН относится к группе многоосновных оксикислот. Содержится в небольших количествах (0,2–0,5 г/кг) в ягодах винограда, а также образуется как вторичный продукт при спиртовом брожении. Содержание в винах составляет до 0,3 г/дм3. В виноделии разрешено использовать лимонную кислоту для исправления низкокислотных виноматериалов: увеличения содержания титруемых кислот и обеспечения требуемых кондиций, а также обеспечения стабильности к микробиальным помутнениям. Для этой цели лимонная кислота вводится в вино в количестве, не превышающем 2 г/дм3.

Введение лимонной кислоты в вина, в которых идет процесс яблочно-мо­лочного брожения, нецелесообразно, так как бактерии ее ассимилируют.

Лимонная кислота применяется также для предотвращения железного кас­са, поскольку образует стойкий растворимый комплекс с ионами трехвалент­ного железа.

Принцип метода. Лимонную кислоту фиксируют вместе с другими орга­ническими кислотами вина на анионообменной смоле. Затем проводят фрак­ционное элюирование, которое позволяет отделить ее от лимонно-яблочной кислоты. Лимонная кислота с помощью щадящего окисления переводится в ацетон, который отделяют дистилляцией. Уксусный альдегид, отгоняемый вме­сте с ацетоном, окисляется до уксусной кислоты, после чего ацетон определяют иодометрическим методом.

Оборудование: анионообменная колонка, установка для атмосферной перегонки.

Реактивы: Смола Дауэкс 1×2 (50-100 меш.); уксусная кислота, растворы 4 М и 2,5 М; гидроксид натрия, раствор 2 М; серная кислота (р20=1,84 г/см3), разбавленная 1:5 и 1:3 по объему; буферный раствор рН 3,2-3,4: 150 г дигидро-фосфата калия КН2РО4, 5 см3 фосфорной кислоты (р20= 1,70 г/см3) доводят во­дой до 1 дм3; сульфат марганца, раствор массовой концентрации 50 г/дм3; пемза; перманганат калия, растворы 0,01 М и 0,4 М; сульфат железа (II) FeSO4∙7H2O, раствор массовой концентрации 40г/100 см3; гидроксид натрия,     5 М раствор; йод, 0,01 М раствор; тиосульфат натрия Na2S2O3, 0,02 М раствор; раствор крах­мала.

Подготовка анионообменной колонки: в бюретку объемом 25 см3 с краном помещают тампон из стекловаты и наливают 20 см3 смолы Дауэкс 1×2. Вначале подверга­ют смолу двум полным циклам регенерации с попеременным пропусканием растворов 1 М соляной кислоты и гидроксида натрия. Ополаскивают 50 см3 воды (пропускание раствора гидроксида натрия вызывает уплотнение с после­дующим набуханием при промывании водой, что мешает стеканию). Как толь­ко первые миллилитры воды начинают проходить через колонку, рекомендуется взбалтывать смолу, чтобы поднять ее со дна бюретки. Переводят смолу в аце­татную форму, пропуская 250 см3 4 М раствора уксусной кислоты; промывают 100 см3 воды.

Анализируемый образец пропускают через колонку в соответствии с описа­нием, приведенным далее. После элюирования кислот промывают смолу 50 см3 дистиллированной воды и производят снова насыщение смолы 4 М раствором уксусной кислоты. Ополаскивают 100 см3 дистиллированной воды.

Ход анализа:

Отделение лимонной и лимонно-яблочной кислот. Пропускают 25 см3 вина через анионообменную колонку Дауэкс 1×2 в ацетатной форме со скоростью 1,5 см3 в мин. Ополаски­вают колонку 20 см3 дистиллированной воды в три приема. Элюируют кислоты 200 см3 2,5 М раствора уксусной кислоты, пропуская элюат с той же скоростью. В этой фракции элюата со­держатся кислоты: янтарная, молочная, галактуроновая, лимонно-яблочная и почти вся яблочная. Затем производят элюирование ли­монной и винной кислот, пропуская через ко­лонку 100 см3 2 М раствора гидроксида натрия, собирают элюат в колбу прибора.

Окисление. В двухгорловую круглодонную колбу на 500 см3, содержащую второй элюат, добавляют серную кислоту, разбавлен­ную 1:5 для доведения рН до 3,2-3,8. Затем добавляют 25 см3 буферного раствора, 1 см3 раствора сульфата марганца и несколько зерен пемзы. Доводят до кипения и отгоняют  50 см3, которые отбрасывают. Помещают 0,01 М раствор перманганата калия в ворон­ку с краном и вводят его со скоростью 1 капля в секунду в кипящий элюат. Дистиллят собирают в склянку объемом 500 см3 с притертой пробкой, содер­жащую несколько см3 воды. Продолжают окисление до окрашивания жидкости в коричневый цвет, указывающий на избыток перманганата.

Отделение ацетона. Если объем дистиллята меньше 90 см3, его доводят до этого объема дистиллированной водой, добавляют 4,5 см3 разбавленной 1:3 серной кислоты и 5 см3 0,4 М раствора перманганата калия. Если объем собранного дистиллята значительно превышает 90 см3, доводят его до 180 см3 и удваивают дозы добавляемых реактивов. В этих условиях (в среднем 0,25 М серной кислоты и 0,02 М перманганата калия) уксусный альдегид окисляется в уксусную кислоту, тогда как ацетон остается без изменения.

Сосуд закупоривают и выдерживают в течение 45 мин при комнатной темпе­ратуре. По окончании этого времени избыток перманганата калия разрушают добавлением раствора сульфата железа (II). Дистиллируют и собирают прибли­зительно 50 см3 дистиллята в сосуд со шлифом, содержащий 5 см3 5 М раствора гидроксида натрия.

Определение ацетона. Добавляют к содержимому колбы 25 см3 0,01 М ра­створа йода, выдерживают 20 мин. Этого количества достаточно при содержа­нии лимонной кислоты не более 0,5–0,6 г/см3; для более высоких концентра­ций указанный объем раствора йода недостаточен, и раствор не приобретает желтую окраску, характерную для избытка йода. В этом случае удваивают или утраивают количество добавляемого йода до получения чистой желтой окрас­ки. Однако в исключительных случаях, когда содержание в вине лимонной кис­лоты превышает 1,5 г/ дм3, предпочтительно начать анализ снова с 10 см3 вина. Затем добавляют 8 см3 разбавленной 1: 5 серной кислоты и титруют из­быток йода 0,02 М раствором тиосульфата натрия в присутствии крахмала. Количество (см3) раствора тиосульфата натрия, израсходованного на титрова­ние, обозначают V.

В аналогичных условиях проводят контрольный опыт, заменив 50 см3 дис­тиллята 50 см3 дистиллированной воды. Обозначают количество раствора тио­сульфата натрия (см3) V`.

Расчет. 1 см3 0,01 М раствора йода соответствует 0,64 мг лимонной кисло­ты. В данных условиях количество лимонной кислоты (С, мг/дм3) определяет­ся выражением:

С = 25,6 (V` V).

Концентрацию лимонной кислоты округляют до целого значения.

Контрольные вопросы:

1.     Источники образования лимонной кислоты в винах;

2.     С какой целью и в каком количестве добавляют лимонную  кислоту в вино?

Страницы: 1, 2, 3, 4, 5, 6, 7, 8




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.