Меню
Поиск



рефераты скачать Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном в...


3.5 ОСНОВНЫЕ РЕЗУЛЬТАТЫ ГЛАВЫ 3

Основные результаты данной главы можно представить следующим образом.

Характер температурной зависимости  интенсивности сенсибилизированной фосфоресценции органических молекул  в замороженных н.-парафиновых растворах  зависит от предыстории образца. После быстрого замораживания раствора интенсивность сенсибилизированной фосфоресценции немонотонно изменяется с увеличением температуры раствора, т.е. наблюдаются области как падения, так и роста интенсивности. Если же быстро замороженный раствор подвергался нагреванию до температур, соответствующих началу температурной области 3, то для такого образца интенсивность сенсибилизированной фосфоресценции при нагревании его от 77 К до точки плавления растворителя монотонно убывает.

Немонотонный характер температурной зависимости, при котором наблюдается увеличение интенсивности сенсибилизированной фосфоресценции при повышении температуры в аномальной области 2, наблюдался только для тех концентраций во всех растворителях, при которых имеет место концентрационное  тушение. Причем эффект увеличения тем больше, чем больше концентрационное тушение.

          Увеличение интенсивности сенсибилизированной фосфоресценции в аномальной температурной области 2 происходит за счёт снятия концентрационного тушения сенсибилизированной фосфоресценции. В результате снятия концентрационного туше6ния происходит увеличение числа молекул акцептора энергии, участвующих в излучении сенсибилизированной фосфоресценции, тогда как относительная заселённость их триплетного уровня практически не изменяется. Этот процесс имеет необратимый характер, а следовательно не может быть обусловлен зависимостью переноса энергии от температуры [51].

На основании вышеизложенного  и (40) можно предположить о наличии процессов в температурной области 2, приводящих к увеличению числа триплетных молекул акцептора, участвующих в излучении сенсибилизированной фосфоресценции с определённой энергией активации Еак. Тогда выдерживание образца при фиксированной температуре из аномальной области так же должно приводить к увеличению интенсивности сенсибилизированной фосфоресценции. Результаты таких исследований кинетики процесса при различных температурах приведены в следующей главе.


Глава 4


Влияние отжига на концентрацию триплетных молекул акцептора энергии

В предыдущей главе при обсуждении причин немонотонного характера температурной зависимости сенсибилизированной фосфоресценции примесных молекул в н.-парафиновых растворах было показано, что рост интенсивности связан не с зависимостью параметров переноса от температуры, а с повышением при данных температурах скорости какого-то физического процесса, приводящего к снятию концентрационного тушения триплетных состояний.

Поэтому необходимо было исследовать изменение люминесцентных характеристик донорно-акцепторных пар в результате выдерживания образца при постоянной температуре из аномальной области 2. Такое выдерживание образца при фиксированной температуре из аномальной области 2 в течение определённого времени в дальнейшем будем называть его отжигом.

В данной главе приведены результаты исследования влияния отжига на спектры, кинетику и интенсивность сенсибилизированной фосфоресценции молекул акцептора и обычной фосфоресценции молекул донора. На основании результатов этих исследований сделан вывод о том, что одной из причин концентрационного тушения возбужденных состояний примесных молекул в н.-парафиновых растворах является образование гетероассоциатов из молекул донора и акцептора, а причиной увеличения интенсивности фосфоресценции молекул донора и сенсибилизированной фосфоресценции акцептора в процессе отжига – их распад.



4.1 ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОТЖИГА НА ИНТЕНСИВНОСТЬ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ И ХАРАКТЕР ЕЁ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ


Для исследования влияния отжига на параметры сенсибилизированной фосфоресценции были выбраны донорно-акцепторные пары бензофенон-аценафтен и бензофенон-нафталин в н.-октане и н.-декане. Выбор объектов в данном случае обусловлен существованием максимального эффекта увеличения концентрации триплетных молекул при нагревании раствора.


На рис. 17 приведена зависимость относительной интенсивности сенсибилизированной фосфоресценции I/I0 (nT/n0T) нафталина в н.-октане от времени отжига образца при двух фиксированных температурах: Т1 = 161 К (кривая 1) и Т2 = 166 К (кривая 2). Здесь I – интенсивность сенсибилизированной фосфоресценции охлажденного до 77 К  после отжига  в течение времени t образца, а I0 – интенсивность фосфоресценции неотожжённого образца при 77 К. Как видно из рисунка, интенсивность сенсибилизированной фосфоресценции, а следовательно и концентрация триплетных молекул нафталина растут с увеличением времени выдерживания образца при фиксированной температуре из области 2. Значение I/I0 (nT/n0T) с увеличением времени отжига монотонно стремится к предельному значению. Это указывает на то, что процесс, приводящий к увеличению числа триплетных молекул акцептора, участвующих в излучении сенсибилизированной фосфоресценции, характеризуется насыщением.

Максимальное значение, к которому стремится I/I0 (nT/n0T) зависит от температуры отжига. С увеличением температуры отжига максимальное значение I/I0 (nT/n0T) увеличивается. При температуре отжига Т1 = 161 К (кривая 1) после достижения насыщения значение I/I0 (nT/n0T) » 11, при Т2 = 166 К (кривая 2), максимальное значение I/I0 (nT/n0T) » 26. Кроме этого, как видно из рис. 12 от температуры отжига зависит также и скорость процесса, приводящего к росту интенсивности сенсибилизированной фосфоресценции нафталина. Скорость процесса тем больше, чем выше температура отжига.

Такие же исследования были проведены для пары бензофенон-аценафтен в н.-декане (рис. 18) при четырёх фиксированных температурах  отжига: Т1 = 157 К (кривая 1), Т2 = 167 К (кривая 2), Т3 = 172 К (кривая 3) и Т4 = 177 К (кривая 4). Для данной пары, как и для предыдущей, интенсивность сенсибилизированной фосфоресценции, а следовательно и число триплетных молекул акцептора энергии I/I0 (nT/n0T) растет с увеличением времени отжига. Предельные значения, к которым стремится I/I0 (nT/n0T), и для данной пары зависят от температуры отжига. С повышением температуры отжига предельные значения I/I0 (nT/n0T)  увеличиваются. Так, при температуре Т1 = 157 К отжиг приводит к максимальному значению I/I0 (nT/n0T) » 15, при Т2 = 167 К - I/I0 (nT/n0T) » 18, при Т3 = 172 К – I/I0 (nT/n0T) »  30  и при Т4 = 177 К – I/I0 (nT/n0T) » 35. Скорость процесса, приводящего к увеличению интенсивности сенсибилизированной фосфоресценции аценафтена так же возрастает с увеличением температуры отжига.

Существование насыщения I/I0 (nT/n0T) при отжиге говорит о том, что в растворе с прошествием времени достигается равновесное состояние. Это состояние в условиях стационарного возбуждения характеризуется определённым числом триплетных молекул акцептора энергии, участвующих в излучении. Причём число триплетных молекул акцептора, характеризующих равновесное состояние, растёт с увеличением температуры отжига.


Таким образом, на основании этих результатов можно сделать вывод о том, что увеличение интенсивности сенсибилизированной фосфоресценции в температурной области 2 и его необратимый характер обусловлен отжигом образца в процессе его нагревания. Подтверждением этого вывода является то, что интенсивность сенсибилизированной фосфоресценции отожжённого образца монотонно убывает при повышении температуры (рис. 19, кривая 1).


Уменьшение интенсивности сенсибилизированной фосфоресценции отожжённого образца при повышении температуры сопровождается падением времени затухания tТ (кривая 2, рис. 19). Это и монотонный характер температурной зависимости интенсивности сенсибилизированной фосфоресценции отожжённого образца указывают на то, что в системе остаётся только один процесс, влияющий на концентрацию триплетных молекул акцептора энергии – динамическое тушение.

Эти результаты дают основание утверждать, что отжиг снимает концен


трационное тушение сенсибилизированной фосфоресценции органических молекул в замороженных н.-парафиновых растворах.

Представляло интерес исследовать влияние отжига на концентрационную зависимость интенсивности сенсибилизированной фосфоресценции. С этой целью был проведён следующий эксперимент.


Для растворов, в которых концентрация молекул донора (бензофенона) оставалась постоянной и равнялась 10-3 М, а концентрация акцептора (нафталина) изменялась от 10-5 М до 10-2 М, измерялось отношение интенсивности сенсибилизированной фосфоресценции акцептора к интенсивности фосфоресценции донора IСФ/IБ (рис.20). Измерения IСФ/IБ производились до отжига образца (кривая 1) и после его отжига (кривая 2) при 185 К по достижению насыщения.


Величина IСФ/IБ для неотожжённого образца при увеличении концентрации нафталина от 10-5 до 5×10-4 М линейно возрастает. Эти данные говорят о том, что в настоящем диапазоне не наблюдается концентрационного тушения сенсибилизированной фосфоресценции. Экспериментальные точки кривой 2 отожжённого образца здесь практически совпадают с точками кривой 1. Следовательно, в области прямой положительной зависимости IСФ/IБ от логарифма концентрации акцептора, низкотемпературный отжиг практически не влияет на число триплетных молекул акцептора.

Далее, при повышении концентрации от 5×10-4 до 10-2 М для неотожжённого образца наблюдается резкое уменьшение IСФ/IБ – область концентрационного тушения сенсибилизированной фосфоресценции. Здесь  отжиг приводит к увеличению значений IСФ/IБ по сравнению с кривой 1. Т.е. экспериментальные данные свидетельствуют о снятии, хотя и не полном, концентрационного тушения сенсибилизированной фосфоресценции в процессе отжига.

Итак, как видно из результатов настоящего опыта, отжиг приводит к увеличению интенсивности сенсибилизированной фосфоресценции только в тех случаях, когда наблюдается ее концентрационное тушение. При этом отжиг приводит только к частичному снятию концентрационного тушения сенсибилизированной фосфоресценции.

Следует отметить, что обезгаживание образца путём многократной перекристаллизации в вакууме не изменяло влияние отжига на интенсивность сенсибилизированной фосфоресценции. Это даёт основание полагать, что снятие тушения сенсибилизированной фосфоресценции в процессе отжига не связано с наличием кислорода в растворе.


4.2 ВЛИЯНИЕ ОТЖИГА НА СПЕКТРЫ И КИНЕТИКУ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ


Если в результате отжига замороженного н.-парафинового раствора органических соединений снимается концентрационное тушение сенсибилизированной фосфоресценции, то можно ожидать, что при этом параметры спектров и кинетики сенсибилизированной фосфоресценции будут изменяться также, как при понижении концентрации раствора. С целью проверки этого предположения было исследовано влияние отжига на спектры сенсибилизированной фосфоресценции  нафталина (рис. 21) и аценафтена (рис. 22) в н.-октане и кинетику сенсибилизированной фосфоресценции аценафтена (табл. 10 и 11).


На рис. 21 приведены спектры фосфоресценции пары бензофенон-нафталин в н.-октане для неотожжённого (а) и отожжённого (б) образцов. Возбуждался только донор энергии. Цифрами 1 на рисунке обозначены линии, принадлежащие спектру фосфоресценции бензофенона, цифрами 2 – спектру сенсибилизированной фосфоресценции нафталина.

Как видно из рис. 21, в результате отжига наблюдается увеличение интенсивности сенсибилизированной фосфоресценции. При этом также наблюдается и увеличение интенсивности фосфоресценции молекул донора. Однако, увеличение интенсивности фосфоресценции молекул донора при этом происходит в меньшее число раз. Так, интенсивность фосфоресценции бензофенона после отжига увеличивается в 4 раза, а интенсивность сенсибилизированной фосфоресценции нафталина увеличивается после отжига в 40 раз.

В результате отжига раствора происходит также смещение максимума 0-0 полосы lmax в коротковолновую область на 40-50 см-1. Для неотожжённого образца lmax – 473.0 нм, для отожжённого – 472.0 нм.


На рис. 22 приведён спектр фосфоресценции пары бензофенон-аценафтен в н.-октане для неотожжённого образца (а) и для отожжённого в течение 4 мин. при 180 К (б). Как видно, и в этом случае отжиг приводит к увеличению как интенсивности фосфоресценции донора, так и интенсивности сенсибилизированной фосфоресценции акцептора. Рост интенсивности фосфоресценции донора при этом меньше, чем акцептора.  При этом так же наблюдается смещение максимума 0-0 полосы в спектре фосфоресценции аценафтена в коротковолновую область на 40-50 см –1.

 Таким образом, сравнение спектральных характеристик неотожжённого и отожжённого образцов показало, что отжиг приводит к смещению максимума 0-0 полосы в спектре сенсибилизированной фосфоресценции в коротковолновую область, а так же к увеличению интенсивности свечения как акцептора, так и донора энергии.

Изучение влияния отжига на кинетические характеристики сенсибилизированной фосфоресценции, в частности на время затухания tТ,  производилось на паре бензофенон-аценафтен в н.-октане. Результаты этих измерений приведены в табл. 12.

Таблица 12.

Параметры сенсибилизированной фосфоресценции аценафтена различной концентрации (СА) до и после отжига.

(Отжиг производился в течение 5 мин. при 175 К; в качестве донора использовался бензофенон неизменной концентрации – СБ = 5×10-3 М; растворитель – н.-октан.)

СА, М

Iот/Iнеот

lmнеот, нм

lmот, нм

tТнеот, с

tТот, с

5×10-3

7.5

481.5

480.5

1.65

2.50

10-3

1.3

481.0

480.0

2.40

2.65

5×10-4

1.1

480.5

480.0

2.60

2.70


Для исследования использовались различные концентрации акцептора энергии: 5×10-3 М – из области, где наблюдается сильное концентрационное  тушение сенсибилизированной фосфоресценции, 10-3 и 5×10-4 М – из области, где тушение уменьшается. Концентрация донора не изменялась и была равна 5×10-3 М. Отжиг производился во всех случаях при температуре 175 К, в течение 5 минут. Такие время и температура отжига, с точки зрения предварительных оценочных экспериментов, приводят к максимальному значению интенсивности по достижению насыщения за указанный промежуток времени.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.