Меню
Поиск



рефераты скачать Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном в...

Нафталин уже в н.-гексане обнаруживает зависимость вида спектра от концентрации: при 10-2 М – спектр квазилинейчатый, в диапазоне 10-3 – 10-5 М –диффузный. Далее, от н.-гептана до н.-декана растворители являются «неудобными» для нафталина [115].

Анализируя приведённые данные по структуре спектров, можно обнаружить связь между «удобством» растворителя, для каждого из входящих в донорно-акцепторную пару соединений, и величиной увеличения числа триплетных молекул акцептора в аномальной температурной области.

Получить аномальную температурную зависимость интенсивности сенсибилизированной фосфоресценции для пары антрон-флуорен в н.-гексане  удалось только для больших концентраций - 2×10-2 М (рис.9). Причём увеличение составляло всего лишь несколько процентов от первоначального значения. Такая концентрация примеси является одной из максимальных, а значение увеличения интенсивности – минимальным для всех исследованных донорно-акцепторных пар. При этом и для донора и для акцептора энергии данный растворитель является «удобным».

Для пар бензофенон-аценафтен и бензофенон-нафталин в н.-гексане и н.-гептане наблюдается немного большее увеличение интенсивности, чем для пары антрон-флуорен, при меньших концентрациях. Так, например интенсивность сенсибилизированной фосфоресценции аценафтена в н.-гексане в аномальной температурной области увеличивается на 20%, при этом концентрация молекул примесей составляла 10-2 М (рис.11, кривая  1). В данной паре н.-гексан является «неудобным» растворителем для донора и «удобным» для акцептора. Сенсибилизированная фосфоресценция нафталина  в н.-гексане при такой же концентрации примесных молекул, 10-2 М, увеличивается в аномальной температурной области до значения, превышающее первоначальное при 77 К (рис.12, кривая 1). Условия «удобства» н.-гексана для нафталина более сложные, чем для аценафтена, т.е. предельная концентрация молекул нафталина, до которой наблюдается внедрение молекул примеси в матрицу растворителя, меньше. Таким образом, «неудобные» растворители способствуют увеличению максимума температурной кривой I/I0.

Н.-октан и н.-декан для донора – бензофенона и акцепторов – аценафтена и нафталина являются «неудобными» растворителями. Наряду с этим в данных растворителях наблюдается максимальное увеличение числа триплетных молекул в температурных измерениях при наименьших исследуемых концентрациях 10-3 - 5×10-3 М.

 При высоких концентрациях в «удобных» растворителях часть молекул внедряется в кристаллы растворителя, а часть вытесняется. В неудобных же растворителях практически все молекулы вытесняются на поверхность. Поэтому локальная концентрация молекул примеси на поверхности кристаллов будет больше в неудобных растворителях, чем в удобных при одной и той же средней концентрации. Этим, по-видимому, объясняется то, что в неудобных растворителях аномальная температурная зависимость наблюдается при меньших концентрациях и более чётко выражена. Это даёт основание предположить, что процесс, ответственный за увеличение числа триплетных молекул, происходит на поверхности кристаллов. А так как сенсибилизированная фосфоресценция наблюдается в результате переноса энергии, то молекулы донора и акцептора, участвующие в процессе переноса находятся на поверхности кристаллов. Это подтверждает и вид спектров сенсибилизированной фосфоресценции для всех исследуемых соединений, который имеет диффузный характер.

Итак, исследование влияния растворителя на характер температурной зависимости сенсибилизированной фосфоресценции показали, что растворитель приводит к изменениям величины наблюдаемого эффекта, что обусловлено различием локальной концентрации примесей в межблочном пространстве в зависимости от удобства растворителя. Т.е. влияние растворителя свелось к влиянию концентрации на характер температурной зависимости сенсибилизированной фосфоресценции.

Таким образом, результаты исследования влияния концентрации на параметры сенсибилизированной фосфоресценции  указывают на то, что аномальный характер температурной зависимости I/I0  сенсибилизированной фосфоресценции наблюдается только для тех концентраций примесей, для которых характерно концентрационное тушение триплетных молекул. Поэтому можно предположить, что причиной увеличения концентрации триплетных молекул акцептора в температурной области 2 является снятие концентрационного тушения. Для выяснения механизмов снятия концентрационного тушения необходимо знать его природу. В зависимости от механизмов концентрационного тушения и процессов, приводящих к его снятию, увеличение интенсивности сенсибилизированной фосфоресценции в температурной области 2 может иметь  обратимый или необратимый характер. Исследованию этого вопроса и посвящён следующий параграф.

 

3.3 НЕОБРАТИМЫЙ ХАРАКТЕР ХОДА КРИВОЙ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ КОНЦЕНТРАЦИИ ТРИПЛЕТНЫХ МОЛЕКУЛ АКЦЕПТОРА



Одним из вопросов, которые необходимо было решить для выяснения природы процесса, приводящего к увеличению числа триплетных молекул в аномальной температурной области  является обратимость этого процесса.

С этой целью был исследован характер изменения интенсивности сенсибилизированной фосфоресценции для донорно-акцепторных пар бензофенон-нафталин в н.-гексане (рис. 15) при повышении его температуры от 77 К до 175 К (кривая 1) и последующем охлаждении от 175 К до 77 К (кривая 2). Также было исследовано изменение интенсивности сенсибилизированной фосфоресценции в температурной области 1 для данной пары при изменении температуры раствора от 77 до 140 К и последующем его охлаждении до 77 К (кривая 3).

Как видно из рис. 15, увеличение интенсивности сенсибилизированной фосфоресценции в температурной области 2 имеет необратимый характер. При охлаждении образца от 175 К до 77 К тушение сенсибилизированной фосфоресценции, которое снимается в температурной области 2, не восстанавливается. Это указывает на необратимость процесса снятия концентрационного тушения. Если же образец нагреть до 150 К и затем его охладить до 77 К (кривая 3), то экспериментальные точки в зависимости интенсивности сенсибилизированной фосфоресценции от температуры укладываются на одну и ту же кривую. Это указывает на то, что изменение интенсивности сенсибилизированной фосфоресценции при нагревании до любой температуры из температурной области 1 является обратимым.

Для окончательного решения вопроса о необратимом характере процесса снятия концентрационного тушения в температурной области 2 был проведён следующий эксперимент. Исследовалась температурная зависимость интенсивности сенсибилизированной фосфоресценции аценафтена в н.-октане при нагревании раствора от 77 К до 185 К (рис.16, кривая 1), последующем его охлаждении от 185 К до 77 К (рис. 16, кривая 2) и повторном нагревании от 77 К до 180 К (рис. 16, кривая 3). Как и в случае нафталина в н.-гексане (рис. 15) изменение интенсивности сенсибилизированной фосфоресценции аценафтена при его нагревании от 77 К до 185 К имеет необратимый характер. Т.е. при последующем охлаждении зависимость имеет монотонный характер. Для одних и тех же температур интенсивность фосфоресценции при охлаждении раствора в несколько раз больше, чем при его нагревании. При последующем увеличении температуры от 77 К до 185 К процесс становится обратимым, на что указывает совпадение кривых 2 и 3. Последний результат говорит о полном снятии концентрационного тушения в температурной области 2, чем также подтверждает данную гипотезу.

Следует отметить, что для аценафтена в н.-октане увеличение интенсивности при 77 К после охлаждения раствора (кривая 2, рис. 16) превосходит первоначальное ее значение при этой же температуре (кривая 1, рис. 16) в 7.4 раза. Тогда как отношение этих величин для нафталина в н.-гексане при 77 К (кривые 1 и 2, рис.15) равно 2,5. Большее значение увеличения I/I0 в сравнении с нафталином в н.-гексане для аценафтена в н.-октане и следовало ожидать в данном случае, поскольку величина аномального температурного эффекта для первой системы больше.


Теперь рассмотрим возможные причины, обуславливающие увеличение концентрации триплетных молекул акцептора.

 Как было показано в 1.3 (формула 7), концентрация триплетных молекул может изменяться как за счёт относительной заселённости триплетного уровня b, так и в результате изменения общего числа молекул, участвующих в излучении N.

Запишем выражение (7) для случая сенсибилизированного заселения триплетного уровня:

.                                                        (42)

Здесь - концентрация триплетных молекул акцептора, - относительная заселённость их триплетного уровня, NA – число молекул акцептора, участвующих в излучении сенсибилизированной фосфоресценции.

С целью ответа на вопрос за счет изменения какого параметра происходит изменение концентрации триплетных молекул акцептора, была определена (по формуле (40)) относительная заселённость их триплетного уровня  при 77 К для кривых 1 и 2 нафталина (рис. 15) и аценафтена (рис. 16). Эти результаты представлены в таблице 6 и 7 соответственно.

Таблица 6

ОТНОСИТЕЛЬНАЯ ЗАСЕЛЁННОСТЬ ТРИПЛЕТНОГО УРОВНЯ НАФТАЛИНА В  Н.-ГЕКСАНЕ ПРИ 77 К.


, с

tT, с

, отн.ед.

    кривая 1

0.9

1.4

0.36

    кривая 2

1.3

1.75

0.26


Таблица 7

ОТНОСИТЕЛЬНАЯ ЗАСЕЛЁННОСТЬ ТРИПЛЕТНОГО УРОВНЯ АЦЕНАФТЕНА В Н.-ОКТАНЕ ПРИ 77 К


, с

, с

, отн. ед.

    кривая 1

0.9

1.65

0.46

    кривая 2

1.2

2.4

0.50


Как видно из табл. 6, значение   уменьшается для нафталина после снятия концентрационного тушения, тогда как концентрация его триплетных молекул увеличивается в 2.5 раза. Для аценафтена (табл. 7) после снятия концентрационного тушения величина   увеличивается на 8 %, тогда как концентрация триплетных молекул увеличивается в 7.4 раза. Таким образом, изменением   нельзя объяснить увеличение концентрации триплетных молекул акцептора. На основании этого можно сделать вывод, что увеличение концентрации триплетных молекул, а следовательно и интенсивность сенсибилизированной фосфоресценции после снятия концентрационного тушения происходит за счёт увеличения числа молекул акцептора, участвующих в излучении сенсибилизированной фосфоресценции.


3.4    ВЛИЯНИЕ СКОРОСТИ ЗАМОРАЖИВАНИЯ НА ПАРАМЕТРЫ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ

Поскольку характер изменения интенсивности сенсибилизированной фосфоресценции при повышении температуры зависит от предыстории образца, то представляло интерес сравнить параметры сенсибилизированной фосфоресценции при быстром и медленном замораживании.

Такие эксперименты были проведены для пары бензофенон-аценафтен в н.-гептане, концентрация донора и акцептора - 5×10-2 М. Результаты исследований положения максимума 0-0 полосы в спектре сенсибилизированной фосфоресценции lmax, времени разгорания tР и времени затухания при различных способах замораживания приведены в таблице 8.

Таблица 8

Параметры сенсибилизированной фосфоресценции аценафтена, донор –бензофенон, в н.-гептане при различных условиях замораживания

Условия замораживания

lmax, нм

tР, с

tТ, с

Быстрое замораживание до 77 К

481.4

1.35

2.10

Быстрое замораживание + нагрев до 170 К и охлаждение до 77 К

480.4

1.55

2.25

Медленное замораживание до 77 К

482.2

1.20

1.75


Из таблицы видно, что процесс увеличения числа молекул акцептора, участвующих в переносе энергии, происходящий при температурах из аномальной области 2 и медленное замораживание образца приводят к различным результатам. Первый процесс ведёт к смещению максимума в коротковолновую область, увеличению времени разгорания и времени затухания сенсибилизированной фосфоресценции. Такие же изменения параметров сенсибилизированной фосфоресценции характерны и для уменьшения концентрации примесей в растворе (табл.4). Медленное замораживание образца, как и увеличение концентрации молекул примесей в растворе приводит к смещению максимума 0-0 полосы в длинноволновую область и уменьшению времени разгорания и времени затухания сенсибилизированной фосфоресценции.

Такое поведение люминесцентных параметров при медленном замораживании образца следовало ожидать. Медленное замораживание, как и повышение концентрации, способствует образованию различных видов агрегатов (см. например [112]). К ним могут относиться, например, молекулы акцептора, внедрённые в кристаллы донора. Такие центры будут характеризоваться другими люминесцентными параметрами, отличными от мономерных молекул. Нами были исследованы люминесцентные характеристики молекул аценафтена, внедрённых в кристаллы бензофенона [28]. Положение  максимума 0-0 полосы в спектре сенсибилизированной фосфоресценции – 482,5 нм, т.е. смещение наблюдается так же в длинноволновую область, как и в случае медленного замораживания.

Таким образом, можно сделать заключение, что медленное замораживание и процесс, происходящий в аномальной температурной области приводят к различным результатам. Так как в первом случае охлаждение происходит медленно, то, по-видимому, в процессе этого успевает произойти установление равновесия в системе (релаксация) при любой температуре. До достижения точки кристаллизации растворителя, при медленном замораживании, раствор более длительное время находится в жидком состоянии при низких температурах. Понижение температуры жидкости приводит к уменьшению растворимости, а это способствует образованию агрегатов. Другим отличием «предыстории» образца медленно замороженного от быстро замороженного является то, что он более длительное время пребывает в температурной области 2 в замороженном виде. Поэтому в нём также могут происходить процессы, приводящие к снятию концентрационного тушения. При нагревании такого раствора не наблюдается аномальных областей увеличения интенсивности сенсибилизированной фосфоресценции. Энергии теплового движения молекул при температурах ниже точки плавления растворителя не хватает для разрушения связей в агрегатах примесей. Поэтому в этом случае ход температурной кривой является обратимым.

 При быстром замораживании не успевает произойти установления равновесия в системе, поэтому при 77 К фиксируется неравновесное состояние. Как показало медленное замораживание, процессы, ведущие в сторону равновесия в системе связаны с образованием агрегатов. Агрегаты представляют собой образования, состоящие из большого числа молекул примесей. Процесс их роста начинается с центров, состоящих из малого числа молекул примесей – ассоциатов. Если предположить, что при быстром замораживании происходит приостановка процесса агрегации на фазе ассоциатов, то дальнейшее поведение образца при повышении температуры можно прогнозировать следующим образом. Энергия связи для молекул в ассоциате является меньшей, чем в агрегатах или кристаллах. Энергии теплового движения молекул при температурах ниже точки плавления растворителя может оказаться достаточно, чтобы скорость процесса распада ассоциатов достигла наблюдаемых величин. Если скорость процесса распада станет сравнима со скоростью изменения температуры, то это должно сказаться на кривой зависимости интенсивности сенсибилизированной фосфоресценции от температуры.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.