Меню
Поиск



рефераты скачать Установка первичной переработки нефти

В колоннах К-1 и К-2 устанавлаваем клапанные тарелки, которые эффективно работают в широком интервале нагрузок.

В основной атмосферной колонне К-2 дистиллятом будет являться фракция нк-140оС; фракции 140-180 0С, 180-230°С и 230-360°С выводятся боковыми продуктами в жидком виде, снизу колонны выводится мазут (>360°С). Фракцию нк-140оС объединяем с продуктом колонны К-1 и направляем на блок стабилизации. Фракцию 180-230°С можем использовать после гидроочистки как компонент зимнего ДТ или в смеси с фракцией 230-360°С как летнее дизельное топливо – в этом случае фракции объединяем после блока теплообменников. Для четкости разделения фракций применяем стриппинги.

Данная схема, в случае необходимости, позволяет получать керосиновую фракцию (140-180 0С+180-230°С), что положительно сказывается на возможном ассортименте нефтепродуктов.

В низ колонны подается водяной пар в количестве 1% на отбензиненную нефть. Для отвода тепла в основной атмосферной колонне К-2 применяем три циркуляционных (верхнее, среднее и нижнее) орошения, теплоту которых используем для подогрева сырой нефти.


3.2.2. Блок стабилизации и чёткой ректификации.

Стабилизации подвергаем бензин из К-1 и фракцию нк-140оС сверху К-2. Согласно рекомендациям [18] блок стабилизации оснащается стабилизатором и несколькими простыми ректификационными колонами числом на единицу меньшим, чем количество выводимых фракций. В нашем случае – одна колонна четкой ректификации, что соответствует заданию. В колонне К-3 производим разделение нестабильного бензина на газ и бензин. Температура в низу стабилизационной колонны поддерживается за счет циркуляции через испаритель нижнего продукта, что позволяет отказаться от печи и снизить расход топлива и выбросы дымовых газов. Стабильный бензин из куба колонны стабилизации отправляется в колонну чёткой ректификации К-4 с целью получения сырья процессов изомеризации (нк-70оС) и каталитического риформинга (70-140оС).

Рис. 3.2. Блок стабилизации бензина.


Из-за отсутствия в нефти растворенного метана и малого количества этана получить сухой газ практически невозможно. Поэтому в емкости орошения получаем сухой газ с содержанием пропана до 7 %, который подаем в качестве топлива в технологические печи установки и рефлюкс.


3.2.3. Вакуумный блок.

На практике существует два основных варианта получения широкой масляной фракции.

1.   Тарельчатая ректификационная колонна.

2.   Вакуумная колонна с высокоэффективной насадкой.

Рис. 3.3. Вакуумный блок.


За основу принимаем второй вариант, так как насадка является более эффективным контактным устройством и обладает малым гидравлическим сопротивлением. Из-за того, что получать базовые масла из вакуумных дистиллятов нецелесообразно, из колонны выводим два боковых погона и вакуумный газойль. Затемненный продукт используем для подогрева низа колонны в качестве «горячей струи». Теплоту вакуумных дистиллятов используем для подогрева сырой нефти.

Для получения остаточного давления в колонне 4-6 кПа, применяем вакуумсоздающую систему, которая состоит из трёх ступеней паровых эжекторов и поверхностных конденсаторов [18] (одна ступень обеспечивает остаточное давление около 13кПа, две – 7-8кПа).

Над вводом сырья и вводом верхнего циркуляционного орошения устанавливаем отбойные тарелки для предотвращения уноса капель жидкости.


3.3. Блок теплообменников

Схема теплообмена на установке должна обеспечивать подогрев нефти до температуры не менее 245 ºС. Основой расчета схемы теплообмена является температура теплоносителей и их расход. В таблице 3.1 представлена характеристика теплоносителей, которые получаются на АВТ. Температура теплоносителей принята на основе литературных и практических данных по установкам АВТ на ОАО «Нафтан» и МНПЗ. Расходы – на основании материального баланса (п. 5)


Таблица 3.1. - Характеристика теплоносителей

Теплоноситель

Расход, % масс. на нефть

Начальная температура теплоносителя, °С

Теплоносители основной атмосферной колонны К-2

Верхнее циркуляционное орошение К-2 (ВЦО К-2) кратность 4

10

150

Среднее циркуляционное орошение К-2 (СЦО К-2) в районе фракции 180-230оС кратность 3

18

220

Фракция 180-230°С

5,9

200

Фракция 230-360°С

16,13

320

Нижнее циркуляционное орошение К-2 (НЦО К-2) кратность 2

32

320

Теплоносители вакуумной колонны К-7

Верхнее циркуляционное орошение К-7 (ВЦО К-7) кратность 15

43

170

Среднее циркуляционное орошение К-7 (СЦО К-7) кратность 2

25

270

Нижнее циркуляционное орошение К-7 (НЦО К-7) кратность 1

11

330

Фр. 360-450оС

12,5

260

Фр. 450-550оС

10,55

320

Гудрон (>530°С)

37,54

340


Расчет схемы теплообмена до электродегидраторов:


1-й поток

Т-101:

∆t н=(150-50)∙5/50=10 ºC

10+10=200С


Т-102:

∆t н=(125-70)∙21,5/50=24 ºC

20+24=44 ºC


Т-103:

∆t н=(145-120)∙18,0/50=9 ºC

44+9=53 ºC


Т-104:

∆t н=(155-100)∙12,5/50=14 ºС

53+14=67 ºС


Т-105:

∆t н=(230-170)∙37,54/50=51 ºС

67+51=118 ºС


2-ой поток

Т-201:

∆t н=(150-50)∙5/50=10 ºC

10+10=200С


Т-202:

∆t н=(125-70)∙21,5/50=24 ºC

20+24=44 ºC


Т-203:

∆t н=(200-65)∙5,9/50=16 ºC

44+16=60 ºC


Т-204:

∆t н=(255-110)∙16,13/50=47 ºС

60+47=107 ºС

           

Потоки объединяем и с температурой 113,5 оС направляем в электродегидраторы.


Расчет схемы теплообмена после электродегидраторов


1-й поток

Т-106:

∆t н=(170-125)∙21,5/50=19 ºС

105+19=124 ºС


Т-107:

∆t н=(220-145)∙9,0/50=14 ºС

124+14=138 ºС


Т-108:

∆t н=(260-155)∙6,25/50=13 ºС

138+13=151 ºС


Т-109:

∆t н=(270-180)∙12,5/50=23 ºС

151+23=174 ºС


Т-110:

∆t н=(330-230)∙0,78∙11/50=17 ºС

174+17=191 ºС


Т-111:

∆t н=(320-230)∙0,78∙16,0/50=22 ºС

191+22=213 ºС


Т-112:

∆t н=(320-240)∙0,78∙10,55/50=13 ºС

213+13=226 ºС


Т-113:

∆t н=(340-250)∙0,78∙18,77/50=26 ºС

226+26=252 ºС


2-ой поток


Т205:

∆t н=(170-125)∙21,5/50=19 ºС

105+19=124 ºС


Т-206:

∆t н=(220-145)∙9,0/50=14 ºС

124+14=138 ºС


Т-207:

∆t н=(260-155)∙6,25/50=13 ºС

138+13=151 ºС


Т-208:

∆t н=(270-180)∙12,5/50=23 ºС

151+23=174 ºС


Т-209:

∆t н=(250-230)∙0,78∙34,54/50=11 ºС

174+11=185 ºС


Т-210:

∆t н=(320-220)∙0,78∙16,0/50=25 ºС

185+25=210 ºС


Т-211

∆t н=(320-255)∙0,78∙16,13/50=16 ºС

210+16=226 ºС


Т-212

∆t н=(340-250)∙0,78∙18,77/50=16 ºС

226+16=252 ºС


Потоки объединяем и с температурой 252 оС направляем в колонну К-1.

Тепло теплоносителей с температурой выше 100оС можем использовать для выработки водяного пара или подогрева бензина на блоке стабилизации.



Рис. 3.4. Схема подогрева нефти до электродегидраторов.

Рис. 3.5. Схема подогрева нефти после электродегидраторов.

4. Расчёт количества и состава паровой и жидкой фаз в ёмкости орошения отбензинивающей колонны (ЭВМ)

 

В ёмкость орошения К-1 поступают лёгкий бензин и углеводородные газы. В состав бензина входит 100% фракции н.к.-105оС от её потенциала содержания в нефти и 40% фракции 105-140оС – 0,036∙0,4=0,0144 (табл. 1.2).

Количество углеводородных газов равно их содержанию в нефти 1,0 %(масс.) на нефть. Для расчета состава и количества газа и бензина в емкости орошения зададимся давлением, температурой, кратностью орошения и составом смеси, поступающей в емкость орошения. Состав смеси зависит от количества компонентов, находящихся в исходной нефти и в орошении колонны.

Принимаем следующие данные: температура в емкости орошения равна 30 °С; давление в емкости орошения обычно на 50 кПа ниже, чем давление на верху К-1 из-за гидравлического сопротивления трубопроводов и холодильников-конденсаторов, и равна 250 кПа; кратность орошения равна 2.

Состав смеси на входе в емкость орошения представлен в таблице 4.1.


Таблица 4.1Состав смеси на входе в емкость орошения

Номер компо-нента по табл.1.2

Компонент (фракция)

Массовая доля компонента в нефти

Количество компонентов в нефти, кг/ч

Смесь углеводородов на входе в емкость с учетом орошения

кг/ч

масс. доля

3

С2Н6

0,000278

99

297

0,0036

6

С3Н8

0,003654

1305

3915

0,0472

7

∑С4

0,006068

2167

6501

0,0784

8

28-62°С

0,018

6429

19287

0,2326

9

62-85°С

0,016

5714

17142

0,2067

10

85-105°С

0,019

6786

20358

0,2455

11

105-140°С

0,0144

5143

15429

0,1861

Итого:

0,0774

27643

82929

1,0000


Результаты расчета состава и количества газа и бензина в емкости орошения отбензинивающей колонны представлены в таблицах 4.2 – 4.5.

           

Пpoгpaммa << OIL >>

Pacчeт пpoцecca oднoкpaтнoгo иcпapeния


Pacxoд нeфти или фpaкции G= 82929 Kг/чac

Pacxoд вoдянoгo пapa Z= 0 Kг/чac

Плoтнocть ocтaткa P19= 975.2000122070312 Kг/M^3

Дaвлeниe пpи oднoкpaктнoм иcпapeнии P= 250 KПa

Teмпepaтуpa oднoкpaтнoгo иcпapeния T= 30 ^C

Peзультaты pacчeтa:

Maccoвaя дoля oтгoнa пapoв e1= 3.992608981207013E-006

Moльнaя дoля oтгoнa пapoв e= 9.99999883788405E-006

Moлeкуляpнaя мacca иcxoднoй cмecи Mi= 80.63008880615234

Moлeкуляpнaя мacca жидкoй фaзы Ml= 80.63030242919922

Moлeкуляpнaя мacca пapoвoй фaзы Mp= 32.19244384765625


Taблицa 4.2 - Cocтaв жидкoй фaзы


кoмпoнeнты

мoльн.дoли

мacc.дoли

Kмoль/чac

Kг/чac

Этaн
Пpoпaн
Бутaн
28–62
62–85
85–105
105–140

0.0096746
0.0885028
0.1109011
0.2485581
0.1943594
0.2089079
0.1390961

0.0035996
0.0471984
0.0783994
0.2326003
0.2067007
0.2455009
0.1860007

9.9504
91.0256
114.0624
255.6432
199.8996
214.8629
143.0610

298.5120
3914.0989
6501.5552
19289.2383
17141.4102
20359.0625
15424.7930

CУMMA

1.0000

1.0000

1028.5050

82928.6719

 

Taблицa 4.3 - Cocтaв пapoвoй фaзы

кoмпoнeнты

мoльн.дoли

мacc.дoли

Kмoль/чac

Kг/чac

Страницы: 1, 2, 3, 4, 5, 6, 7




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.