Большое значение имеет понятие
неопределенности. Рассмотрим на примерах. При моделировании спроса на
какой-либо товар могут быть известны только либо верхний и нижний пределы
колебания спроса, либо статистическое распределение возможных значений спроса.
Тогда в первом случае имеет место статистическая неопределенность, когда
неизвестен даже закон распределения событий (значений спроса), а во втором –
статистическая неопределенность, соответствующая случаю, при котором нельзя
точно назвать значение спроса, хотя закон распределения известен.
Неопределенности такого рода могут возникнуть в результате действий конкурента,
удовлетворяющих какую-то часть спроса, или вследствие «игры природы» (изменения
климатических, социальных и других условий). В любой игре имеются следующие
элементы: множество всех игроков , где i –
произвольный игрок. Всякий игрок имеет в своем распоряжении множество стратегий
поведения, или возможных действий, .
Процесс игры заключается в выборе каждым
игроком одной определенной стратегии , обеспечивающей игроку, например,
максимальный выигрыш . Здесь функция называется функцией
выигрыша игрока. Таким образом, налицо множество стратегий игроков
называемое ситуацией, в которой каждый игрок или их группа (коалиция)
имеет какой-либо выигрыш (проигрыш).
Игры бывают бескоалиционными, когда
целью каждого участника является получение максимального индивидуального
выигрыша, и коалиционные, связанные с обеспечением максимального
выигрыша для всей коалиции игроков. Если выигрыш одного игрока равен проигрышу
другого при любой стратегии, то игра называется антагонистической. Если
число стратегий одного игрока конечно, то такая игра носит название матричной.
Основные принципы определения оптимального
поведения игроков сводятся к принципам устойчивости, которые состоят в
том, чтобы отклонение от выбранной оптимальной стратегии уменьшает выигрыш
игрока. Например, для бескоалиционной игры наилучшая стратегия поведения
соответствует принципу равновесия, при котором ни одному игроку не
выгодно менять стратегию, если у остальных игроков остаются неизменными.
Имитационные системы. Применение оптимизационных и игровых моделей в практических задачах
встречает затруднение, когда заходит речь о моделировании «больших систем». К
ним относятся социально-экономические системы, характеризуемые большим числом
параметров, сложным переплетением интересов, неопределенной структурой и
многочисленными целями. Объекты такого типа плохо поддаются формализации и
математическому описанию на основе аппарата оптимизационных и игровых моделей.
Сложность построения моделей «больших систем» заключается прежде всего в
трудности постановки или формулирования задачи моделирования, которая требует
комплексного системного описания наиболее важных сторон объекта.
Имитационное моделирование представляет собой
систему, состоящую из совокупностей следующих элементов:
·
имитационных моделей,
отображающих определенные черты, свойства или части «большой системы» и
позволяющих отвечать на вопрос: что будет при данных условиях и принятом
решении (прямя задача моделирования)?
·
экспертов и экспертных процедур, необходимых для анализа и оценки различных решений, исключения
заведомо слабых решений, построения «сценариев» развития событий, выработки
целей и критериев;
·
«языков ЭВМ», на основе
которых осуществляется двусторонний контакт экспертов с ЭВМ. Эксперт задает
исходные данные, меняет структуру моделей, формулирует вопросы ЭВМ при помощи
специальных языков моделирования.
Имитационные модели представляют собой
программы для компьютера, описывающие поведение компонентов системы и
взаимодействие между ними. Расчеты при различных исходных данных позволяют
имитировать динамические процессы, происходящие в реальной систем.
Математический аппарат, используемый для
построения имитационных моделей, может быть самым разнообразным, например,
теория массового обслуживания, теория агрегативных систем, теория автоматов,
теория дифференциальных уравнений и т.д. Имитационные модели обычно требуют
статистической обработки результатов моделирования, поэтому в основу всякой
имитации входят методы теории вероятностей и математической статистики.
Экспертные процедуры используют коллективный
опыт людей и предназначены для усреднения мнений и получения объективной оценки
какого-либо события или явления. Например, для определения пропорций развития
отраслевых групп обслуживания экспертам раздают анкеты определенного образца и
прелагают ознакомиться со «сценарием» развития сферы обслуживания населения.
«Сценарий» представляет собой прогноз определенного рода состояния развития
общественных потребностей на длительную перспективу, включая численность
населения, его доходы и расходы по статьям затрат, жилищные условия, внедрение
в практику новой техники и технологий, совершенствование видов и форм
обслуживания и т.п.
После ознакомления со «сценарием» эксперты
выражают свое мнение в виде баллов. Затем анкеты собирают, и результаты
экспертного анализа усредняют по каждой отраслевой группе и нормируют, т.е.
баллы по каждой отраслевой группе делят на их общую сумму. Полученные
нормированные баллы отражают желаемые пропорции развития отраслевых групп
обслуживания. Можно осуществить учет компетентности эксперта, проставив ему
соответствующий «вес», аналогичный баллам.
При оценке качества функционирования
какой-либо имитационной модели эксперты определяют, какие параметры модели
главные, а какие – второстепенные; устанавливают желаемые пределы изменения
параметров; осуществляют выбор лучшего варианта модели. В задачи эксперта
входит также изменение условий моделирования в тех случаях, когда после
проведения модельных экспериментов выявляются новые неучтенные факторы.
Эконометрика. Основные понятия эконометрического
моделирования
Под статистическими данными понимают
систематизированные и группированные однородные, количественные сведения о
реальной экономической деятельности за прошлые периоды времени или результаты
многократно проводимых экспериментов и наблюдений. Такие данные играют важную
роль в экономико-математическом моделировании, в частности, для
·
построения аналитического вида функций, описывающих
взаимосвязи между экономическими величинами;
·
оценки параметров и проверки адекватности
экономико-математических моделей реальным явлениям;
·
выявления закономерностей, которым подчиняются
экономические явления, и тенденций развития динамических процессов.
На стыке экономической практики и
математической статистики в начале 30-х годов зародилась новая самостоятельная
дисциплина, получившая название "Эконометрика".
Эконометрика - это наука, которая изучает
статистические закономерности в экономике.
Методологическая особенность эконометрики
заключается в применении достаточно общих гипотез о статистических свойствах
экономических параметров и ошибок при их измерении. Полученные при этом
результаты могут оказаться нетождественными тому содержанию, которое
вкладывается в реальный объект. Поэтому важная задача эконометрики - создание
как более универсальных, так и специальных методов для обнаружения наиболее
устойчивых характеристик в поведении реальных экономических показателей.
Эконометрика разрабатывает методы подгонки формальной модели с целью наилучшего
имитирования ею поведения моделируемого объекта на основе гипотезы о том, что
отклонения модельных значений параметров от их реально наблюдаемых случайны и
вероятностные характеристики их известны.
Математическая статистика является тем
универсальным аппаратом, который удачно вписывается в содержание различных
эконометрических исследований. Такие ее разделы, как корреляционный и
регрессионный анализы, метод наименьших квадратов и прогнозирование, как нельзя
лучше подходят для выявления статистических закономерностей в экономике.
Корреляционный анализ позволяет количественно
оценить связи между большим числом взаимодействующих экономических явлений как
между случайными величинами. Его применение делает возможным проверку различных
экономических гипотез о наличии и силе связи между двумя величинами или группой
величин. Корреляционный анализ тесно связан с регрессионным анализом, задача
которого состоит в экспериментальном определении параметров корреляционных
зависимостей (см. §2.5 ) между экономическими показателями путем наблюдения за
характером их изменения. Одним из основных методов регрессионного анализа
является метод наименьших квадратов, краткое содержание которого было изложено
в §2.5. Модели, полученные с помощью регрессионного анализа, позволяют
прогнозировать варианты развития экономических процессов и явлений, изучить
тенденции изменения экономических показателей, т.е. служат инструментом
научно-обоснованных предсказаний. Результаты прогноза являются исходным материалом
для постановки реальных экономических целей и задач, для выявления и принятия
наилучших управленческих решений, для разработки хозяйственной и финансовой
стратегий в будущем.
Как составная часть математической экономики,
эконометрика вполне естественно вписывается в общий алгоритм
экономико-математических исследований. Эконометрические исследования начинаются
после того, как
·
определен общий вид математической модели с
неизвестными параметрами;
·
собраны все необходимые статистические данные,
имеющие отношение к оцениваемым параметрам;
·
поставлена задача отыскания значений неизвестных
параметров, обеспечивающих наилучшее приближение модельных значений к их
значениям, наблюдавшимся в действительности.
Эконометрика как раз и занимается методами
получения лучших оценок параметров эконометрических моделей, конструируемых в
прикладных целях.
Эконометрические модели по сравнению с
аналитическими более точны и подробны, не требуют грубых допущений и упрощений,
позволяют учесть большое число факторов. Основные их недостатки - громоздкость,
плохая обозримость, большой расход машинного времени при их построении и
анализе и крайняя трудность поиска оптимальных решений, которые приходится
искать "на ощупь", путем догадок и проб (в отличие от более приспособленных
к оптимизационным задачам аналитических моделей). Наиболее эффективная методика
экономико-математических исследований - это совместное применение аналитических
и эконометрических моделей. Аналитическая модель дает возможность в общих
чертах разобраться в явлении, наметить как бы контуры основных закономерностей.
Уточнение же этих закономерностей - прерогатива эконометрических моделей. С
этой точки зрения важная задача эконометрики - проверка теоретико-экономических
положений и выводов на фактическом (эмпирическом) материале при помощи методов
математической статистики.
В общем случае эконометрическая модель может
содержать несколько уравнений, а в каждом уравнении - несколько переменных.
Задача оценивания параметров такой разветвленной модели решается с помощью
сложных и причудливых методов. Однако все они имеют одну и ту же теоретическую
основу. Поэтому для получения начального представления о содержании
эконометрических методов мы ограничимся в последующих параграфах рассмотрением
простой линейной регрессии. Термин "регрессия" используется для
описания природы связи между переменными, а термин "корреляция" - для
измерения тесноты связи.
По мере возрастания сложности после
статистического анализа, который касается поведения отдельных переменных, идет
линейная регрессия с двумя переменными (парная регрессия). Простая линейная
регрессия связана с тем, что называется двумерным распределением случайных
величин, т.е. распределением двух переменных. Понятно, что использование двух
переменных дает большую информацию, нежели одной. Например, доход от продажи
товара можно анализировать, используя только данные о доходе на прошлых
периодах времени вне связи с другими факторами (статистический анализ). Но мы
получим гораздо более богатую информацию, если примем во внимание другие
факторы, которые влияют на объем продаж: спрос, цена товара, цена
товара-конкурента, период времени, затраты на рекламу и др. Если при этом
расходы на рекламу явились бы главным фактором, определяющим объем продаж, то
знание вида связи объема продаж и расходов на рекламу было бы весьма полезным
для планирования финансовой политики компании. Точно так же нас могут
интересовать двумерные распределения объема продаж и цены товара, дохода от
продаж и уровня спроса и т.д. Другими примерами линейной регрессии с двумя
переменными могли бы быть соотношения между издержками производства и
квалификацией рабочих, между качеством продукции и продолжительностью рабочего
дня, между весом и возрастом кур и т.д.
Линейную регрессию, как математическую модель,
можно использовать для того, чтобы делать какие-то прогнозы или предсказания.
Например, любая курица, реальный вес которой значительно отличается от
прогнозируемого среднего веса, может быть подвергнута обследованию. В
результате последующего анализа могут быть выявлены причины отклонения веса и
приняты меры по улучшению рациона питания или изменению режима обслуживания и
условий содержания.
Основным недостатком, присущим линейным
эконометрическим моделям с двумя переменными, является их неадекватность к
реальной действительности. Это вызвано, во-первых, тем, что статистическая (и,
в частности, корреляционная) зависимость между экономическими величинами
практически никогда не бывает в чистом виде линейной; во-вторых, многие
факторы, влияющие на эти две переменные, остаются за пределами модели, т.е.
оказываются неучтенными.
Основы системного анализа. Формулировка проблемы. Определение
целей. Формирование критериев. Генерирование альтернатив. Выбор. Интерпретации
и анализ ожидаемых результатов.
Системный анализ – методология исследования
сложных объектов как систем. Эта методология есть эффективным способом решения
сложных, не совсем четко сформулированных проблем. В задачах системного анализа
любой объект рассматривается не как единое целое, а как система взаимосвязанных
частей (объектов), их взаимосвязей и характеристик. Системный анализ можно
свести к уточнению сложной проблемы, её структурированности относительно
совокупности задач, которые решаются путем детализации целей, построение
методов достижения этих целей с помощью экономико-математических и других
методов..
Системный анализ, зародившись в недрах
общественных и биологических наук, перешел к "освоению" технических
наук. Однако системы общественные и социальные, биологические и экологические,
технические системы, информационные системы и системы научных знаний - это все
же системы с совершенно различными характеристиками и даже с различной
терминологией. Вследствие этого формулировки основных положений системного
анализа применительно к конкретным классам систем иногда воспринимаются как
слишком общие и даже иносказательные; с другой стороны, слишком специальная
терминология конкретизирует, но одновременно и сильно сужает область применения
выработанных формулировок. По-видимому, все же единственно разумным путем
представляется "перевод" основных положений системного анализа с
"общего" языка на язык конкретной области знаний, к которой относится
исследуемый объект.
Первый шаг системного анализа - представление
объекта в виде системы. Следующий шаг - системное исследование объекта в трех
аспектах. В табл.2 отражены направления системного исследования и
последовательность осуществления его этапов.
Наиболее успешно системный анализ
применяют при изучении комплексных систем сложной структуры. Интуиции, квалификации
одного человека, независимо от способностей и опыта, теперь уже недостаточно
для управления сложными производственными системами. В дальнейшем руководителю
придется решать проблемы не только в масштабе предприятия, но и в масштабе
отрасли. Для принятия решений руководителю необходимо опираться на эмпирическую
и фактическую информацию. Вместо экстраполяции прошлого опыта, как главного
пути для принятия решений, теперь рекомендуется применять математические
модели, информационные системы, составляющие основу системного анализа.
Системный анализ имеет сугубо практическую
ориентацию. Однако, несмотря на множество различных примеров его удачного
применения, пока не полностью разработана его методология. При решении каждой
задачи выбирается своя методика, которая базируется на основах наук, законах
логики и некоторых специфических процедурах. При этом можно выделить следующие
основные особенности системного анализа:
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
|