Меню
Поиск



рефераты скачать Теоретические основы математических и инструментальных методов экономики

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая  модель замещает оригинал лишь в строго ограниченном смысле.  Из этого следует,  что для одного  объекта  может быть построено  несколько  "специализированных" моделей,  концентрирующих внимание на  определенных  сторонах  исследуемого объекта или  же характеризующих объект с разной степенью детализации.

На втором  этапе  процесса моделирования модель выступает как самостоятельный объект исследования.  Одной из форм такого исследования является  проведение  "модельных"  экспериментов, при которых сознательно  изменяются  условия  функционирования модели и  систематизируются данные о ее "поведении".  Конечным результатом этого этапа является множество знаний о модели.

На третьем  этапе  осуществляется перенос знаний с модели на оригинал - формирование множества знаний об объекте. Этот процесс переноса  знаний  проводится по определенным правилам. Знания о модели  должны  быть  скорректированы  с  учетом  тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели. Мы можем с достаточным основанием переносить какой-либо результат с модели на оригинал, если этот результат необходимо связан с признаками сходства оригинала и  модели.  Если  же  определенный результат модельного исследования связан с отличием модели от  оригинала,  то  этот результат переносить неправомерно.

Четвертый этап - практическая проверка получаемых  с  помощью моделей знаний и их использование для построения обобщающей теории объекта,  его преобразования или управления им.

Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник  знаний  об объекте. Процесс  моделирования  "погружен" в более общий процесс познания.  Это обстоятельство учитывается  не  только  на этапе построения  модели,  но  и на завершающей стадии,  когда происходит объединение и обобщение  результатов  исследования, получаемых на основе многообразных средств познания.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй,  третий и т.д.  При этом знания об исследуемом объекте  расширяются  и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные  после  первого  цикла   моделирования, обусловленные малым  знанием  объекта  и ошибками в построении модели, можно исправить в последующих  циклах.  В  методологии моделирования, таким образом, заложены большие возможности саморазвития.

Большинство объектов, изучаемых экономической наукой, может быть  охарактеризовано  кибернетическим  понятием  сложная система.

Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность,  единство.  Важным  качеством любой системы является эмерджентность - наличие таких  свойств,  которые  не присущи ни  одному из элементов,  входящих в систему.  Поэтому при изучении систем недостаточно пользоваться методом их расчленения на  элементы  с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований – в том, что  почти  не существует экономических объектов, которые можно  было  бы  рассматривать  как  отдельные  (внесистемные) элементы.

Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между  системой  и  средой.  Экономика страны обладает всеми признаками очень сложной системы.  Она объединяет огромное число элементов,  отличается многообразием внутренних связей и связей с другими системами (природная  среда,  экономика других стран  и  т.д.).  В  народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы.

Сложность экономики иногда рассматривалась как  обоснование невозможности ее моделирования,  изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности.  И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь  моделирование  может  дать  результаты,  которые нельзя получить другими способами исследования.

Потенциальная возможность  математического  моделирования любых экономических объектов и процессов не означает,  разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике.  И хотя нельзя указать абсолютные границы математической  формализуемости  экономических   проблем, всегда будут  существовать  еще неформализованные проблемы,  а также ситуации,  где математическое моделирование недостаточно эффективно.

Уже длительное  время главным тормозом практического применения математического моделирования в экономике является наполнение разработанных  моделей  конкретной и качественной информацией. Точность и полнота первичной  информации,  реальные возможности ее  сбора  и  обработки во многом определяют выбор типов прикладных моделей.  С другой стороны,  исследования  по моделированию экономики  выдвигают  новые требования к системе информации.

В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация  имеет  существенно различный характер  и происхождение.  Она может быть разделена на две категории:  о прошлом развитии и современном  состоянии объектов (экономические наблюдения и их обработка) и о будущем развитии объектов,  включающую данные об ожидаемых  изменениях их внутренних параметров и внешних условий (прогнозы).  Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.

Методы экономических наблюдений и использования результатов этих наблюдений разрабатываются экономической статистикой. Поэтому стоит  отметить только специфические проблемы экономических наблюдений,  связанные с  моделированием  экономических процессов.

В экономике многие процессы являются массовыми;  они  характеризуются закономерностями,  которые  не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в экономике должно опираться на массовые наблюдения.

Другая проблема порождается  динамичностью  экономических процессов, изменчивостью  их  параметров и структурных отношений. Вследствие этого экономические процессы приходится постоянно держать под наблюдением,  необходимо иметь устойчивый поток новых данных.  Поскольку наблюдения за экономическими процессами и  обработка  эмпирических  данных обычно занимают довольно много времени, то при построении математических моделей экономики требуется  корректировать исходную информацию с учетом ее запаздывания.

Познание количественных отношений экономических процессов и явлений опирается на экономические измерения. Точность измерений в  значительной степени предопределяет и точность конечных результатов количественного анализа посредством  моделирования. Поэтому  необходимым  условием эффектного использования математического моделирования является совершенствование  экономических измерителей. Применение математического моделирования заострило проблему измерений и количественных  сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В процессе моделирования возникает  взаимодействие  "первичных" и "вторичных" экономических измерителей.  Любая модель народного хозяйства опирается на определенную систему экономических измерителей (продукции,  ресурсов, элементов и т.д.). В то же время одним из важных результатов  народнохозяйственного моделирования является получение новых (вторичных) экономических измерителей - экономически обоснованных цен  на  продукцию различных отраслей,   оценок  эффективности  разнокачественных природных ресурсов,  измерителей общественной полезности  продукции. Однако  эти измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для хозяйственных моделей.

С точки зрения "интересов" моделирования экономики в настоящее время наиболее актуальными проблемами совершенствования экономических измерителей являются:  оценка результатов интеллектуальной деятельности (особенно в сфере  научно-технических разработок, индустрии информатики),  построение обобщающих показателей социально-экономического развития,  измерение эффектов обратных  связей (влияние хозяйственных и социальных механизмов на эффективность производства).

Для методологии планирования  экономики  важное  значение имеет понятие неопределенности экономического развития. В исследованиях по экономическому  прогнозированию  и  планированию различают два типа неопределенности: "истинную", обусловленную свойствами экономических процессов,  и "информационную",  связанную с неполнотой и неточностью имеющейся информации об этих процессах. Истинную неопределенность нельзя смешивать с объективным существованием  различных вариантов экономического развития и возможностью сознательного выбора среди них  эффективных вариантов. Речь идет о принципиальной невозможности точного выбора единственного (оптимального) варианта.

В развитии  экономики  неопределенность  вызывается двумя основными причинами.  Во-первых, ход планируемых и управляемых процессов,  а также внешние воздействия на эти процессы не могут быть точно предсказуемы из-за действия случайных  факторов и ограниченности человеческого познания в каждый момент.  Особенно характерно это для  прогнозирования  научно-технического прогресса,  потребностей  общества,  экономического поведения. Во-вторых,  общего сударственное планирование и управление  не только не всеобъемлющи, но и не всесильны, а наличие множества самостоятельных экономических субъектов с  особыми  интересами не  позволяет  точно  предвидеть результаты их взаимодействий. Неполнота и неточность информации об объективных  процессах  и экономическом поведении усиливают истинную неопределенность.

На первых этапах исследований по моделированию  экономики применялись в  основном  модели детерминистского типа.  В этих моделях все параметры предполагаются точно известными.  Однако детерминистские модели неправильно понимать в механическом духе и отождествлять их с моделями,  которые лишены всех "степеней выбора"  (возможностей выбора) и имеют единственное допустимое решение. Классическим представителем жестко детерминистских моделей является оптимизационная модель народного хозяйства, применяемая для определения наилучшего варианта  экономического развития среди множества допустимых вариантов.

В результате накопления опыта использования жестко детерминистских моделей были созданы реальные возможности успешного применения более совершенной методологии моделирования  экономических процессов, учитывающих стохастику и неопределенность. Здесь можно выделить два  основных  направления  исследований. Во-первых, усовершенствуется  методика  использования  моделей жестко детерминистского типа:  проведение многовариантных расчетов и модельных экспериментов с вариацией конструкции модели и ее исходных данных; изучение устойчивости и надежности получаемых решений,  выделение зоны неопределенности;  включение в модель резервов,  применение приемов, повышающих приспособляемость экономических решений к вероятным и непредвидимым ситуациям. Во-вторых,  получают распространение модели,  непосредственно отражающие  стохастику и неопределенность экономических процессов и использующие соответствующий математический  аппарат: теорию  вероятностей и математическую статистику,  теорию игр и статистических решений,  теорию массового  обслуживания, стохастическое программирование, теорию случайных процессов.

Сложность экономических  процессов и явлений и другие отмеченные выше особенности экономических систем  затрудняют  не только построение  математических  моделей,  но  и проверку их адекватности, истинности получаемых результатов.

В естественных науках достаточным условием истинности результатов моделирования и любых других форм познания  является совпадение результатов  исследования  с  наблюдаемыми фактами. Категория "практика" совпадает здесь  с  категорией  "действительность". В  экономике и других общественных науках понимаемые таким образом принцип "практика - критерий истины" в большей степени применим к простым дескриптивным моделям,  используемым для пассивного описания и  объяснения  действительности (анализа прошлого развития, краткосрочного прогнозирования неуправляемых экономических процессов и т.п.).

Однако главная  задача экономической науки конструктивна: разработка научных методов планирования и управления  экономикой. Поэтому  распространенный тип математических моделей экономики - это модели управляемых и  регулируемых  экономических процессов, используемые для преобразования экономической действительности. Такие модели называются нормативными.  Если ориентировать нормативные модели только на подтверждение действительности, то они не смогут служить инструментом  решения  качественно новых социально-экономических задач.

Специфика верификации нормативных моделей экономики  состоит в том, что они, как правило, "конкурируют" с другими, уже нашедшими практическое применение методами планирования и  управления. При  этом  далеко  не  всегда можно поставить чистый эксперимент по верификации модели, устранив влияние других управляющих воздействий на моделируемый объект.

Ситуация еще более усложняется,  когда ставится вопрос  о верификации моделей долгосрочного прогнозирования и планирования (как дескриптивных,  так и нормативных).  Ведь  нельзя  же 10-15 лет и более пассивно ожидать наступления событий,  чтобы проверить правильность предпосылок модели.

Несмотря на отмеченные усложняющие обстоятельства,  соответствие модели фактам  и  тенденциям  реальной  экономической жизни остается  важнейшим критерием,  определяющим направления совершенствования моделей. Всесторонний анализ выявляемых расхождений между действительностью и моделью,  сопоставление результатов по модели с результатами,  полученными иными методами, помогают выработать пути коррекции моделей.

Значительная роль в проверке моделей принадлежит логическому анализу,  в  том  числе средствами самого математического моделирования. Такие формализованные приемы верификации  моделей, как  доказательство существования решения в модели,  проверка истинности статистических гипотез о связях  между  параметрами и переменными модели,  сопоставления размерности величин и т.д.,  позволяют сузить класс потенциально  "правильных" моделей.

Внутрення непротиворечивость предпосылок модели  проверяется также  путем  сравнения друг с другом получаемых с ее помощью следствий,  а также со следствиями "конкурирующих" моделей.

Оценивая современное состояние проблемы адекватности  математических моделей экономике, следует признать, что создание конструктивной комплексной методики верификации моделей,  учитывающей как  объективные  особенности  моделируемых объектов, так и особенности их познания,  по-прежнему является одной  из наиболее актуальных  задач экономико-математических исследований.

Основы оптимального управления. Экономические процессы и их формализованное представление. Управление и управляющие воздействия. Общая постановка задачи оптимального управления.

Рассмотрим общую постановку задачи оптимизации экономических систем. Пусть имеется система, состояние которой может изме­ниться в результате некоторого количества управляющих воздействий. Задавая эти воздействия, можно получить определенный процесс изменения состояния си­стемы. При этом возникают две задачи: первая предполагает выбор таких воздействий на систему, чтобы проис­ходящий процесс удовлетворял заданным условиям, такие процессы принято называть допустимыми), вторая задача - выбор из этого множества допустимых процессов наилучшего (оптимального) процесса.

Чтобы решать оптимизационные задачи с помощью мате­матических методов, нужно сформулировать на математическом языке рассматриваемые процессы, ограничения, накладываемые на состояние системы и управляющие воздействия, а так же записать математические модели, описывающие эти процессы.

Введем некоторые понятия и обозначения. Рассмотрим множество М с эле­ментами v, где v - пары вида v=(x, у), , ,  - некоторые заданные множества. Проек­цией  множества М на множество Х назовем подмножество Мx, обладающее тем свойством, что для каждого  существу­ет такой элемент , что пара  содержится в мно­жестве М.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.