Меню
Поиск



рефераты скачать Электрические аппараты

 


(3.45)


После этого определяем среднюю длину витка и активное сопротивление обмотки

 


(3.46)

Теперь производим проверку выбранных параметров: если напряжение сети в квадрате U2 отличается от суммы (IR)2 и (4,44шфт)2 более чем на 10%, то необходимо варьировать число витков до тех пор, пока не получим удовлетворительного совпадения.

После расчета активного сопротивления производится проверка катушки на нагрев. Расчет ведется так же, как и для катушек постоянного тока. Характерной особенностью здесь является нагрев магнитопровода за счет потерь от вихревых токов и гистерезиса. Отвод тепла, выделяемого в самой катушке через сердечник, затруднен. Поэтому точка с максимальной температурой лежит на внутреннем радиусе катушки. Из-за плохого охлаждения катушки через сердечник в катушке стремятся развивать поверхность торцов, через которые может отдаваться значительная часть тепла.

Если полное сопротивление обмотки электромагнита при любом рабочем зазоре значительно меньше полного сопротивления цепи (последовательная обмотка), то величина тока в обмотке электромагнита не зависит от положения якоря. Расчет таких обмоток ведется так же, как и для последовательных обмоток постоянного тока. Закон изменения потока в рабочем зазоре такого электромагнита аналогичен закону в электромагните постоянного тока, поскольку электромагнит работает при постоянной н. с. катушки.

Полное падение напряжения на обмотке электромагнита равно:

 


(3.47)


Если электромагнит с параллельной катушкой питается от источника с другим напряжением и сила тяги должна остаться той же, то обмоточные данные должны быть соответственно изменены. Величина н. с. и угол сдвига между током и напряжением при этом также считаются неизменными. Должны быть соблюдены следующие соотношения:

(3.48)


Полная мощность обмоток при переходе с одного напряжения на другое при соблюдении указанных условий не изменяется, так как


(3.49)


Магнитные материалы для электромагнитов постоянного и переменного тока


При заданном потоке падение магнитного потенциала уменьшается с уменьшением магнитного сопротивления. Так как сопротивление обратно пропорционально магнитной проницаемости материала, при данном потоке магнитная проницаемость должна быть возможно выше. Это позволяет уменьшить н. с. катушки и мощность, необходимую для срабатывания электромагнита; уменьшаются размеры катушки, обмоточного окна и всего электромагнита. Уменьшение н. с. катушки при прочих неизменных параметрах уменьшает температуру обмотки.

Вторым важным параметром материала является индукция насыщения. Сила, развиваемая электромагнитом, пропорциональна квадрату индукции. Поэтому чем больше величина допустимой индукции, тем больше величина развиваемой силы при тех же размерах.

После того как катушка электромагнита обесточивается, в системе существует остаточный поток, который определяется коэрцитивной силой материала и проводимостью рабочего зазора. Остаточный поток может привести к залипанию якоря. Во избежание этого явления требуется, чтобы материал обладал низкой коэрцитивной силой (малой шириной петли гистерезиса).

Существенными требованиями являются низкая стоимость материала и его технологичность.

В электромагнитах переменного тока для компенсации активных потерь в стали приходится затрачивать дополнительную энергию. Это приводит к увеличению намагничивающего тока в катушке аппарата. В связи с этим материалы, используемые для электромагнитов переменного тока, должны иметь малые потери на вихревые токи и гистерезис. Сердечники для таких электромагнитов делаются шихтованными, причем чем выше частота тока, тем меньше должна быть толщина листа. Пластины магнитопровода изготавливаются из листовой стали штамповкой. Для быстродействующих электромагнитов постоянного тока также применяются шихтованные сердечники, так как при этом уменьшаются вихревые токи, дающие замедление нарастания потока.

Наряду с указанными свойствами магнитные характеристики материалов должны быть стабильны (не меняться от температуры, времени, механических ударов).

Лекция №4


Тема лекции:

Энергетический баланс электромагнита постоянного тока. Расчет силы тяги, формула Максвелла. Сила тяги электромагнитов переменного тока. Магнитный демпфер


СИЛА ТЯГИ ЭЛЕКТРОМАГНИТОВ

а) Энергетический баланс электромагнита постоянного тока. Рассмотрим процесс возникновения магнитного поля в простейшем клапанном электромагните (рис. 4.1,а). После включения цепи напряжение источника уравновешивается активным падением напряжения и э. д. с. самоиндукции:

 


(4.1)


Умножив обе части уравнения на idt, получим:


(4.2)


Произведя интегрирование, получим:

 

(4.3)


где потокосцепление к моменту времени

Левая часть равенства представляет энергию, которая затрачена источником тока. Первый член правой части есть потери энергии в активном сопротивлении цепи, второй—энергия, затраченная на создание магнитного поля. До тех пор, пока сила, развиваемая электромагнитом, меньше силы пружины, якорь электромагнита неподвижен, и потокосцепление нарастало при неизменном значении рабочего зазораА- Зависимость  при этом зазоре представлена кривой 1 рис..

Допустим, что при достижении значения потокосцепления Wt сила электромагнита стала больше силы пружины и якорь переместился в положение, при котором рабочий зазор стал равен Так как при меньшем зазоре проводимость рабочего зазора возрастает, потокосцепление увеличится до значения _ Величина тока при этом увеличится до значения' Если изобразить зависимость при зазорето получим кривую 2 рис.4.1б. До начала трогания якоря энергия магнитного поля, запасенная в цепи, равна:

 


(4.4)


где              масштаб по оси тока, А/мм; масштаб  по оси потокосцепления, площадь криволинейного треугольника Оаb, мм

 







Рис.4.1 К определению силы тяги электромагнита


При движении якоря потокосцепление изменится от  до Энергия магнитного поля при этом возросла на величину .42, равную:

 


(4.5)



гдеплощадь криволинейной трапеции.

При переходе от зазорак зазору_ якорь электромагнита совершил механическую работу Л3.

Энергия, накопленная в магнитом поле, к концу хода равна Л4:

 


(4.6)


На основании закона сохранения энергии можно написать:


(4.7)


Механическая работа, совершенная якорем электромагнита, определяется из

 


(4.8)


Согласно рис. эта энергия равна:


(4.9)


б) Расчет силы тяги электромагнита постоянного тока. Средняя сила на ходе якоря от 6i до 62 равна:


(4.10)


гдеперемещение якоря, а уменьшение зазора.

Следует учитывать, что(рис. 4.1,а). Тогда

Для расчета силы, развиваемой электромагнитом, необходимо определить механическую работу Л3, совершаемую электромагнитом при небольшом перемещении якоря, после чего разделить эту работу на изменение зазора, что в пределе дает:

 


(4.11)


Силадействует в сторону уменьшения зазора.

Очевидно, что для каждого элементарного перемещения якоря можно определить свое А3 и найти среднюю силу, развиваемую на данном участке хода якоря.

Зависимость тяговой силы электромагнита от величины рабочего зазора при неизменном значении тока в его обмотке называется статической характеристикой электромагнита. Величина силы может быть найдена с помощью рис. 4.2:

 


(4.12)

 








Рис. 4.2. К определению силы тяги


Эта сила развивается электромагнитом при среднем зазоре

 


(4.13)


Аналогично определяется сила

 


(4.14)

которая развивается при среднем зазоре

 


(4.15)


На готовом электромагните статическая характеристика может быть легко снята. Для этого в воздушный зазор электромагнита ставится немагнитная прокладка, после чего к электромагниту подводится напряжение. С помощью динамометра постепенно увеличивается противодействующая сила до тех пор, пока якорь не оторвется от сердечника. Эта сила в момент отрыва будет равна статическому усилию при зазоре, равном       толщине прокладки. После этого меняют толщину прокладки и опыт повторяют при новом значении зазора.

Величина силы, развиваемой электромагнитом, может быть рассчитана с помощью формулы Максвелла. Если поле в рабочем зазоре равномерно и полюсы ненасыщены, то формула Максвелла для силы в одном зазоре имеет вид

 


(4.16)


в) Аналитический расчет силы для ненасыщенных электромагнитов. Исходя из закона сохранения энергии, можно показать, что энергия, полученная магнитным полем при элементарном перемещении якоря, равна механической работе, произведенной якорем, и изменению запаса электромагнитной энергии:


(4.17)


гдеэлементарная энергия, полученная полем при перемещении якоря;элементарная работа, произведенная якорем;приращение магнитной энергии.

Из уравнения легко получить:

 


(4.18)


Учитывая, что (для линейной магнитной цепи), получаем:

 


(4.19)


Для статической тяговой характеристики так как ток в цепи не меняется. Тогда

 

(4.20)


Для клапанного электромагнита потокосцепление зависит от рабочего потока и потока рассеяния:


(4.21)


Поскольку цепь линейна (пренебрегаем насыщением стали), то потокосцепление обусловленное рабочим потоком Фг, равно:


(4.22)


Потокосцепление Ч7в, обусловленное потоком рассеяния, в свою очередь равно:


(4.23)


Подставив , получим:

(4.24)



Поскольку проводимость рассеяния от зазора б не зависит, тоСила, развиваемая электромагнитом, будет равна:

 


(4.25)


Если известна аналитическая зависимость, то находится дифференцированием. В уравнение (4.25) подставляется интересующего нас значения зазора  Если G6 определяется в результате графического построения поля, то вначале производится расчетдля ряда положений якоря, после чего графически строится зависимостьi и производится графическое дифференцирование.

При достаточно малом зазоре для системы рис. 3.1

 


(4.26)


Тогда величина силы F равна:

 


(4.27)


Согласно выражению сила, развиваемая электромагнитом, пропорциональна квадрату н. с. катушки, площади полюса и обратно пропорциональна квадрату величины зазора. Зависимость при неизменной н. с. катушки представлена на рис. 4.3 (кривая 1). По мере уменьшения б величина силы резко возрастает, причем при б = 0 сила принимает бесконечное значение. В действительности при б = 0 величина потока в системе определяется магнитным сопротивлением цепи, которое резко возрастает по мере насыщения материала магнитопровода, и сила имеет конечное значение. Кривая 2 на рис.4.3 изображает зависимость , снятую экспериментально. Сравнение этих кривых показывает, что при больших зазорах, когда поток в системе мал и падением магнитного потенциала в сердечнике можно пренебречь, расчетная и экспериментальная кривые почти полностью совпадают. При малых зазорах сила, развиваемая электромагнитом, имеет конечное значение.


 






Рис. 4.3. Тяговая характеристика


Многочисленные исследования показали, что для расчета силы в насыщенных электромагнитах можно пользоваться формулой (4.25), но только вместо берется падение магнитного потенциала в рабочем зазоре:

 


(4.28)


Величину находят в результате расчета магнитных цепей.

Поскольку формула Максвелла учитывает реальную индукцию между полюсами, то она также может быть использована при условии, что поле в зазоре равномерно и вектор индукции перпендикулярен к поверхности полюса.

г) Сила тяги электромагнита переменного тока. Рассмотрим задачу применительно к клапанному электромагниту с двумя рабочими зазорами, сделав следующие допущения: магнитное сопротивление стали, активное сопротивление обмотки и потери в стали равны нулю; напряжение, ток и поток меняются по синусоидальному закону.

В этом случае поток, а следовательно, потокосцепление не зависят от величины зазора .

Тогда мгновенное значение силы будет равно:

 


(4.29)




Подставив, получим:

 


(4.30)


Поскольку  при данном зазорене зависят от времени, можно записать:

 


(4.31)



Производная может быть найдена графическим дифференцированием зависимости, которая получается из расчета магнитной цепи. Величина определяется приложенным напряжением.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.