Меню
Поиск



рефераты скачать Электрические аппараты

Известно, что в электрическом контакте при переходе тока из одного контакта в другой происходит искривление линий тока, аналогичное показанному на рис. 6.3. Для одноточечного контакта касание контактов происходит по площадке смятия. Если положить, что эта площадка находится в центре цилиндрических проводников, то сила, действующая на каждый контакт, может быть рассчитана по формуле

 

(6.12)


Где             радиус цилиндрического контакта;

                   радиус круглой площадки касания.

При номинальном токе эта отбрасывающая сила ничтожна. При коротком замыкании в одноточечном контакте отбрасывающая сила может достигать сотен ньютонов. Для того чтобы контакт был динамически устойчив, сила нажатия должна быть больше силы отброса.

В реальных контактах, кроме силы отброса, возникающей из-за изменения сечения проводника, появляется дополнительное э. д. у. за счет взаимодействий, создаваемых токоведущим контуром.

Силы втягивания дуги (проводника) в стальную решетку


В дугогасительных камерах аппаратов высокого и низкого напряжений применяется решетка из набора ферромагнитных пластин с пазами.

Электрическая дуга, возникающая между контактами аппарата, является своеобразным проводником тока. Взаимодействие этого проводника с решеткой создает электромагнитную силу, двигающую дугу. Наиболее широко распространены решетки из стальных пластин с клиновидными пазами.

Рассмотрим силу, действующую на проводник (дугу), симметрично расположенный в пазу прямоугольного сечения (рис.6.3).

При расчете примем следующие упрощения: магнитное сопротивление стали равно нулю; потоком рассеяния, выходящим с торца решетки пренебрегаем; ток течет по геометрической ОСИ проводника.

В данном случае для расчета силы удобно воспользоваться энергетическим методом. Сила, действующая на проводник, в данном случае будет равна

 


(6.13)

 







Рис.6.4.К расчету сил, действующих на проводник расположенный в прямоугольном пазу ферромагнитного тела


Индуктивность системы L можно выразить через поток

 


(6.14)


Поскольку тогда

 


(6.15)


Поток, связанный с проводником, равен

(6.16)


где

         активная длина решетки;

         расстояние от проводника до начала паза;

         ширина паза.

Подставляя , получим

 


(6.17)



При сделанных допущениях сила, действующая на проводник, не зависит от положения проводника в пазу.

В дугогасительных устройствах низкого напряжения дуга, втягиваясь в решетку, пересекает ее и останавливается в точке а, в которой сила, действующая на дугу, должна быть равна нулю.

Это может быть при                       т. е. дуга остановится в точке, где поток достигает максимального значения. Поскольку                        то эта точка также соответствует максимуму электромагнитной энергии. По мере движения дуги вверх проводимость нижней части магнитной цепи растет линейно с х. В точке а общая проводимость цепи будет максимальна. Если дуга пройдет выше нее, то поток начнет снова убывать и возникнет сила, стремящаяся вернуть дугу опять в точку а.

В реальном аппарате картина значительно усложняется, поскольку по мере продвижения дуги вверх растет поток в цепи и наступает насыщение верхней части пластин решетки. Если опытным путем , с помощью измерительной катушки получить зависимость Фл- = /(х), заменив дугу проводником, то величина силы, действующей на дугу, может быть достаточно точно рассчитана с учетом сопротивления стали по следующей формуле:

(6.18)

 


где                       находится графическим дифференцированием опытной кривой Фх = / (л:). Для клиновидной щели (рис.6.5) сила, действующая на дугу, может быть также рассчитана по уравнению (6.16), если принять те же допущения, что и для прямоугольной щели:

 


(6.20)



Здесь          воздушный зазор на расстоянии х от начала решетки

 


Рис. 6.5. К расчету сил, действующих на проводник, расположенный в суживающемся пазу ферромагнитного тела

Подставив Фх1 в уравнение для силы, получим

 


(6.21)


В отличие от предыдущего случая по мере роста х1 величина силы увеличивается и достигает бесконечной величины при х1 —h. В действительности, по мере уменьшения Ьх будет возрастать падение магнитного потенциала в стали. В этом случае мы не имеем права пользоваться уравнением. При 6( = 0 вся намагничивающая сила проводника становится равной падению магнитного потенциала в стали. Уравнением можно пользоваться только тогда, когда падение магнитного потенциала в стали невелико (не более 10% от общей намагничивающей силы).

Сила, действующая на дугу, может значительно искажаться ее формой. После расхождения контактов дуга имеет форму не прямолинейного проводника, а скорее форму части окружности. Это приводит к тому, что сначала в решетку входит средняя часть дуги, а потом ее крайние части. Кроме того, дуга может не располагаться точно по оси паза, что также затрудняет расчет. Формулы могут быть использованы только для ориентировочных расчетов. Для более точных расчетов рекомендуется опытным путем снимать зависимость Фх = / (х) и пользоваться графическим дифференцированием.

Аналогичные силы возникают между проводником и ферромагнитным телом, поскольку при приближении проводника к телу обязательно возрастает поток и, следовательно, увеличивается электромагнитная энергия системы.

Электродинамическая устойчивость аппаратов


Электродинамические силы, возникающие в токоведущих частях аппаратов, стремятся деформировать как сами проводники, так и изоляторы, с помощью которых эти проводники укреплены к заземленным частям аппарата.

Ранее было показано, что э. д. у. меняются как во времени, так и по направлению. Известно, что прочность материала зависит не только от величины силы, но и от направления, длительности ее воздействия и от крутизны нарастания. К сожалению, в настоящее время сведения о работе проводниковых и изоляционных материалов в динамическом режиме крайне ограничены. Поэтому расчет прочности конструкции, как правило, ведется, исходя из максимально возможных сил, хотя действуют эти силы кратковременно.

Электродинамической устойчивостью аппарата называется его способность противостоять силам, возникающим при протекании токов короткого замыкания.

Эта устойчивость может выражаться либо непосредственно амплитудным значением тока £дин, при котором механические напряжения в деталях аппарата не выходят за пределы допустимых величин, либо кратностью этого тока относительно амплитуды номинального тока

 


(6.22)


Иногда динамическая устойчивость оценивается действующим значением ударного тока за период после начала короткого замыкания.

В однофазных установках расчет э. д. у. ведется по ударному току короткого замыкания


(6.23)


Если короткое замыкание произошло вблизи генератора, то за расчетную величину берется амплитуда сверхпереходного тока короткого замыкания.

Для трехфазного аппарата за расчетный ток принимается


(6.24)


где ток Iтз — амплитуда симметричной составляющей 3-фазного замыкания. Расчет устойчивости проводится для средней фазы, дающей наибольшее значение сил.

Для проводниковых материалов рекомендуется не превышать следующих значений механических напряжений:

Медь (МТ)-1400 кГ/см2; 1 кГ/см2 =

Алюминий (AT) —700 кГ/см2.


Допустимые максимальные температуры электрических аппаратов в нормальном режиме и при коротком замыкании

Изолированные проводники электрического тока в нормальном режиме

Как показывают наблюдения, чем выше температура, воздействию которой подвергаются изоляционные материалы, входящие в конструкции аппаратов, тем быстрее ухудшаются их механические и электрические качества: уменьшаются механическая и электрическая прочность, эластичность; при переменном токе увеличиваются диэлектрические потери, что, в свою очередь, вызывает дальнейшее повышение температуры изоляции и ее быстрое старение. Ухудшение электрических и механических свойств изоляционных материалов приводит к нарушению нормальной работы аппарата. С другой стороны, при прочих равных условиях, чем большие температуры допускаются в аппарате, тем требуется меньший расход проводниковых материалов, следовательно, снижаются вес и стоимость аппарата. Оптимальное решение вопроса о допустимых температурах достигается в результате длительных лабораторных исследований и эксплуатации электрических аппаратов с разными изоляционными материалами при различных температурах и режимах работы (длительном, повторно-кратковременном, кратковременном).

Естественно, что изоляционные материалы обладают разной стойкостью в отношении воздействия температур. Кроме того, в различных условиях степень воздействия температуры на изоляционные материалы меняется. Так, например, воздействие температуры на изоляцию проводников катушек, пропитанных лаком, значительно слабее, чем непропитанных, и старение изоляции в них соответственно будет протекать медленнее.

В настоящее время в соответствии с ГОСТ 8865—58 и нормами МЭК (Международная электротехническая комиссия) изоляционные материалы разбиты по нагревостойкости на семь классов Y, А, Е, В, F, Н, С, длительно допустимые температуры для этих классов приведены в табл.6.1. В ГОСТах обычно наряду с допустимой температурой часто указывается допустимое превышение температуры аппарата над температурой окружающего воздуха, определяемое как разность допустимой температуры и температуры окружающего воздуха. При этом температура окружающего воздуха чаще всего принимается 35 или 40° С.

Дело в том, что в некоторых пределах изменения температур окружающего воздуха для данного режима работы превышение температуры аппарата практически не зависит от температуры окружающего воздуха, и, таким образом, результаты испытаний на нагрев электрических аппаратов, проведенные при разных температурах окружающего воздуха, становятся сравнимыми. Однако следует помнить, что срок службы аппарата определяется не превышением температуры, а температурой нагрева, и вследствие этого превышения температуры могут быть допущены разные в зависимости от температуры окружающего воздуха.

В настоящее время во многих ГОСТах на электрические аппараты приведенная классификация изоляционных материалов пока не нашла отражения. Так, например, в ГОСТ 8024—56 «Аппараты переменного тока высокого напряжения» в зависимости от нагрева при длительной работе все изоляционные материалы разделяются на классы О, А, В, С с наибольшей температурой нагрева только 110° С.

Для трансформаторного масла согласно ГОСТ 8024—56 допускается превышение температуры 40° С, если масло используется в качестве дугогасящей среды, и 55° С — для случаев, когда масло используется только как изолирующая среда.

Применительно к аппаратам низкого напряжения (до 1000 В) разработан ГОСТ 12434—66, в котором электрические аппараты разделяются на аппараты распределения энергии и аппараты управления приемниками энергии.

К аппаратам распределения энергии относятся автоматические выключатели, переключатели, плавкие предохранители, контактные разъемы.

К аппаратам управления — приемникам энергии относятся контакторы, реле управления и промышленной автоматики, командоконтроллеры, кнопки управления, конечные и путевые выключатели, резисторы, реостаты, электромагниты, контроллеры, ручные и электромагнитные пускатели.


Таблица 6.1 Длительно допустимые температуры для изоляционных материалов различных классов

Класс

У

А

Е

В

F

Н

С

90

105

120

130

155

180

180


Примечание.

Класс У— непропитанные и непогруженные в жидкий электроизоляционный материал, волокнистые материалы из целлюлозы и шелка, а также другие материалы, соответствующие данному классу и другому сочетанию материалов.

Класс А — пропитанные и погруженные в жидкий электроизоляционный состав волокнистые материалы из целлюлозы или шелка, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Класс Е~ некоторые синтетические и органические пленки, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Класс В — материалы на основе слюды (в том числе на органических подложках), асбеста и стекловолокна, применяемые с органическими связующими и пропитывающими составами, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Класс Fматериалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с синтетическими связующими и пропитывающими составами, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Класс Н — материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с кремнийорганическими связующими и пропитывающими составами, кремнийорганические эластомеры, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Класс С — слюда, керамические материалы, стекло, кварц, применяемые без связующих составов или с неорганическими или кремнийорганическими связующими составами, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Изолированные и неизолированные токоведущие части аппаратов при коротких замыканиях


Короткое замыкание в электроустановках сопровождается протеканием по проводникам токов, значительно превышающих токи нормального рабочего режима. Так как длительность протекания токов короткого замыкания измеряется обычно от долей до единиц секунд, то естественно, что и допустимые температуры в конце короткого замыкания могут быть значительно выше температур, допускаемых при длительной нормальной работе.

В настоящее время довольно широко распространено мнение о нецелесообразности ограничения каким-либо ГОСТом температур при коротких замыканиях, и взамен этого предлагается предъявлять требования к аппарату: быть пригодным к дальнейшей эксплуатации после протекания тока короткого замыкания данной длительности

(1 сек, 5 сек и т. д.). Для лучшей ориентировки при проектировании электрических аппаратов приведем предельно допустимые температуры в конце короткого замыкания, которые обычно принимаются за основу при расчете устойчивости электрических аппаратов при коротких замыканиях:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.