Меню
Поиск



рефераты скачать Влияние обменных взаимодействий на вероятность дезактивации триплетных молекул акцепторов

Влияние обменных взаимодействий на вероятность дезактивации триплетных молекул акцепторов

Курсовая работа



ВЛИЯНИЕ ОБМЕННЫХ ВЗАИМОДЕЙСТВИЙ НА ВЕРОЯТНОСТЬ ДЕЗАКТИВАЦИИ ТРИПЛЕТНЫХ МОЛЕКУЛ АКЦЕПТОРОВ









Выполнил: Чекан Михаил Григорьевич  




СОДЕРЖАНИЕ

Введение......................................................................................................................................... 3

ГЛАВА I. Основные закономерности сенсибилизированной фосфоресценции в твёрдых растворах органических соединений............................................................................................................. 6

1.1. Явление сенсибилизированной фосфоресценции и триплет-триплетный перенос энергии электронного возбуждения........................................................................................................... 6

1.2. Современные теории межмолекулярного переноса энергии в конденсированных средах        9

1.3. Экспериментально установленные закономерности межмолекулярного триплет-триплетного переноса энергии......................................................................................................................... 19

1.4. Выводы к первой главе........................................................................................................ 28

ГЛАВА II. МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ.............................. 30

2.1. Растворители и соединения................................................................................................ 30

2.1.1. Растворители...................................................................................................................... 31

2.1.2. Донор энергии................................................................................................................... 32

2.1.3. Акцепторы энергии........................................................................................................... 35

2.2. Схема экспериментальной установки и методика получения спектров и измерения параметров кинетики....................................................................................................................................... 39

2.3. Методика определения константы скорости излучательного перехода     S0 ← T акцепторов энергии....................................................................................................................................................... 44

ГЛАВА III. ВЛИЯНИЕ ДОНОРА НА КОНСТАНТУ СКОРОСТИ ИЗЛУЧАТЕЛЬНОГО ПЕРЕХОДА В МОЛЕКУЛАХ АКЦЕПТОРА..................................................................................................... 47

3.1. Зависимость константы скорости излучательного перехода триплетных молекул акцептора от концентрации донорно-акцепторной смеси............................................................................. 47

3.2. Изменение времени затухания сенсибилизированной фосфоресценции за счёт константы скорости излучательного перехода в акцепторе....................................................................................... 57

Основные результаты и выводы................................................................................................ 63

Список литературы...................................................................................................................... 65

Введение

С проблемой безызлучательного переноса энергии электронного возбуждения исследователям приходится сталкиваться при изучении самых разнообразных систем в таких областях науки как люминесценция, фотосинтез, радиационная физика и химия, биоэнергетика.

Фундаментальные представления о механизмах переноса энергии базируются в основном на классических результатах по фотонике синтетических органических соединений в конденсированных средах [1-4]. Хорошими модельными системами, которые часто  используются для экспериментального изучения и проверки выводов теории переноса энергии  триплетного возбуждения между молекулами,   являются твёрдые растворы органических соединений. Это обусловлено своеобразием их физических свойств и возможностью широкого практического применения [5,6]. К таким средам относятся стекла активированные атомами или ионами, поликристаллические растворы, активированные полимерные пленки.

Основные закономерности межмолекулярного триплет-триплетного переноса  энергии были установлены именно при исследовании тушения фосфоресценции молекул донора молекулами акцептора в этих системах. Однако даже для наиболее изученных донорно-акцепторных пар параметры переноса энергии триплетного возбуждения существенно отличаются у различных авторов [5-9].

Квантово – механическая теория триплет-триплетного переноса энергии в конденси­рованных средах  была развита в работах Ферстера и Декстера [10,11].

Одним из выводов теории является то, что взаимодействие между компонентами донорно – акцепторной пары не влияет на константы скоростей как излучательной, так и безызлучательной дезактивации возбуждений акцептора. Именно это положение теории Фёрстера – Декстера (наряду с некоторыми другими) подвергается критике в новой теории переноса энергии, разрабатываемой в последнее время В.Я. Артюховым и Г.В. Майером [12-14]. Согласно этой теории взаимодействие между компонентами в донорно – акцепторной паре возмущает электронные состояния изолированных молекул еще до возбуждения молекул донора. При этом можно ожидать изменения константы скорости излучательной дезактивации энергии электронного возбуждения как в молекулах донора, так и в молекулах акцептора.

Наиболее актуальным вопрос о взаимном влиянии компонент донорно – акцепторной смеси на константы скоростей излучательной и безызлучательной дезактивации возбуждений является для межмолекулярного триплет – триплетного переноса энергии, поскольку он происходит при малых расстояниях между компонентами, так как обусловлен обменными взаимодействиями.

Таким образом, изучение механизмов дезактивации триплетных молекул в твердых растворах при их сенсибилизированном возбуждении и определение их вклада в дезактивацию возбуждений имеет актуальное значение для теории и практики межмолекулярного переноса энергии по обменно – резонансному механизму в конденсированных средах и является необходимым этапом дальнейшего развития его теоретических основ.

В связи с этим целью дипломной работы является исследование влияния взаимодействий между молекулами акцепторов в возбужденном триплетном состоянии и молекулами доноров в основном синглетном состоянии на вероятность излучательной дезактивации триплетных возбуждений акцепторов.

В соответствии с этим были поставлены следующие задачи:

- исследование спектров и кинетики сенсибилизированной фосфоресценции молекул аценафтена и нафталина, выбранных в качестве акцепторов, при возбуждении донора – бензофенона;

            - рассмотрение методики определения константы скорости излучательного перехода     S0 ← T акцепторов энергии;

- установление зависимости константы скорости излучательного перехода триплетных молекул акцептора от концентрации донорно-акцепторной смеси.

Глава I . Основные закономерности сенсибилизированной фосфоресценции в твёрдых растворах органических соединений.


1.1. Явление сенсибилизированной фосфоресценции и триплет-триплетный перенос энергии электронного возбуждения.

С проблемой резонансного безызлучательного переноса энергии электронного возбуждения исследователям приходится сталкиваться при изучении самых разнообразных систем в таких областях науки как люминесценция, фотосинтез, радиационная физика и радиационная химия, биоэнергетика. Этот процесс является промежуточным между актом возбуждения электронов и теми конечными процессами, где энергия возбужденных электронов используется.

Экспериментальные исследования позволили установить основные эмпирические закономерности и предложить феменологические модели описания процесса переноса энергии. Квантово-механическая теория переноса энергии в конденсированных средах была развита Т. Ферстером [1,10] для диполь-дипольного взаимодействия, и позже обобщена в работе Д. Декстера на случай мультипольных и обменных взаимодействий [11]. Дальнейшее ее развитие состояло в учете макроскопических параметров, влияющих в основном на эффективность передачи энергии. При этом основные положения теории Ферстера критическому анализу не подвергались, а изучались границы ее применимости. С начала 90-х годов В.Я. Артюховым и Г.В. Майером с сотрудниками развивается квантово-химический подход изучения переноса энергии в бихромофорных системах [15-19], результаты которого распространяются и на бимолекулярные системы. Результаты этих теоретических исследований хорошо согласуются с имеющимися экспериментальными данными. Однако механизм переноса энергии в рамках квантово-химического подхода не совпадает с механизмом, следующим из теории Ферстера.

В 1952 г. Теренин и Ермолаев наблюдали новое явление, заключающееся в том, что фосфоресценция нафталина в твердом растворе возбуждалась светом ртутной лампы с длинной волны в области 365 нм в присутствии бензофенона или бензальдегида в растворе хотя сам нафталин излучение с данной длинной волны не поглощает [20]. Теренин и Ермолаев интерпретировали указанное явление как безызлучательный перенос энергии электронного возбуждения от триплетных молекул бензальдегида или бензофенона (доноры энергии) к невозбужденным молекулам нафталина (акцепторы энергии) с переводом последних прямо в триплетное состояние, т.е. процесс протекает по схеме:

3ГД + 1ГА → 1ГД + 3ГА.

В случае явления сенсибилизированной флуоресценции из энергетических соображений необходимо, что бы нижний синглетный возбужденный (флуоресцентный 1Г*) уровень донора был выше флуоресцентного уровня акцептора. Вследствие размытости спектров поглощения органических соединений в растворах это приводит к тому, что невозможно избирательно возбуждать молекулы донора энергии, не затрагивая акцептор. Кроме того, вероятность безызлучательного переноса энергии между возбужденной флуоресцентной и нормальной молекулами тем больше, чем сильнее перекрываются спектры излучения донора энергии со спектром поглощения акцептора, что одновременно приводит к сильной реабсорбции и вторичной флуоресценции, которые весьма трудно учесть в конкретных условиях опыта. В случае сенсибилизированной фосфоресценции обстоятельства значительно более благоприятны, так как можно возбуждать донор энергии, не затрагивая акцептор, и, кроме того, в области излучения донора энергии отсутствует сколько-нибудь заметное поглощение акцептора. Это возможно благодаря тому, что разность энергий между флуоресцентным и триплетным уровнем у различных классов ароматических молекул изменяется в широком интервале значений. Потому при облучении светом ртутных линий  3650 Å смешанного раствора бензальдегида и нафталина будут поглощать свет и возбуждаться только молекулы бензальдегида. Появление в спектре свечения полос фосфоресценции нафталина можно объяснить лишь с помощью безызлучательного переноса энергии от бензальдегида в триплетном состоянии к нафталину с переводом последнего также в триплетное состояние. Как показали опыты, твердые растворы нафталина и других использованных акцепторов энергии в концентрации до 0,1-0,5 М не излучают свойственных им спектров флуоресценции и фосфоресценции при интенсивном возбуждении светом ртутных линий  3650 Å. Схема нижних возбужденных электронных уровней молекул донора и акцептора энергии в явлении сенсибилизированной фосфоресценции приведена на рис.1. Слева изображены основной, флуоресцентный и фосфоресцентный уровни донора энергии, справа – то же для акцептора энергии. Сплошными линиями изображены электронные переходы, связанные с поглощением или излучением света, волнистыми – переходы, при которых электронная энергия растрачивается в тепловое движение, и, наконец, пунктирными – переходы, сопровождающие безызлучательный перенос энергии электронного возбуждения от донора к

Рис.1. Схема электронно-колебательных уровней молекул донора и акцептора в явлении безызлучательного переноса энергии по триплетным уровням.


 
акцептору.



1.2 Современные теории межмолекулярного переноса энергии в конденсированных средах.

К проблеме дезактивации возбуждений в условиях переноса энергии имеет отношение широкий круг как экспериментальных, так и теоретических вопросов. Квантово – механическая теория переноса энергии в конденси­рованных средах была развита Т. Фёрстером [1,2]. В ней предполагается, что перенос энергии происходит благодаря слабому диполь-дипольному взаимодействию между молекулами. И происходит он в несколько этапов:

1)                     сообщение энергии молекуле донора с переводом ее в возбужденное состояние;

2)                     колебательная релаксация возбужденной молекулы донора до установления теплового равновесия со средой или внутренняя конверсия в более устойчивое возбужденное электронное состояние (для органических молекул это нижнее возбужденное синглетное  или нижнее триплетное );

3)                     непосредственная передача возбуждения от донора к акцептору;

4)                     колебательная релаксация в доноре до установления теплового равновесия со средой и релаксация или внутренняя конверсия в молекуле акцептора;

5)                     излучение или деградация энергии в акцепторе (при наличии миграции энергии может быть еще передача энергии другой такой же молекуле).

В результате процессов 4 система выходит из резонанса и обратный перенос энергии становится невозможным.

Согласно теории возмущений [21] в квантовой механике вероятность перехода системы из начального состояния, описываемого волновой функцией  в конечное  определяется выражением:

                                                                                         (1.1)

где  — плотность конечных состояний;  — оператор, инициирующий переход (гамильтониан взаимодействия). Для приготовления начального  и конечного  квантовых состояний берутся симметризованные определенным образом произведения невозмущенных волновых функций молекул донора и акцептора в соответствующих состояниях , . Верхние индексы 0 и 1 отвечают основному и возбужденному состояниям соответственно. В качестве оператора перехода Ферстер берет оператор межмолекулярного взаимодействия. Это положение теории Ферстера, а также выбор начального и конечного электронных состояний (и) авторы новой теории переноса энергии (В.Я. Артюхов и Г.В Майер) считают ошибочными с позиций современной теории электронных переходов [12,22,23].

В адиабатическом приближении волновые функции , записываются через произведение электронной волновой функции  на колебательную . Тогда в одноэлектронном приближении, пренебрегая перекрыванием, имеем

Обозначения (1) и (2) означают координаты первого и второго электронов, а  и  – нормальные колебания в соответствующем состоянии.

Предполагается слабая зависимость электронного матричного элемента от координат ядер молекул (приближение Кондона), который имеет вид

            (1.2)

Выражение для вероятности (константа скорости) переноса энергии записывается в следующем виде:

   (1.3)

где  и  — энергии чисто электронного перехода в доноре и акцепторе соответственно,  означает болцьмановское усреднение по начальному состоянию.

При конкретизации вида гамильтониана взаимодействия , это взаимодействие представляется в виде суммы взаимодействия внешних электронов донора и акцептора. С учетом этого вероятность переноса энергии при диполь-дипольном взаимодействии имеет вид:

,                          (1.4)

Страницы: 1, 2, 3, 4, 5, 6, 7




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.