Меню
Поиск



рефераты скачать Термодинамика

   При самом грубом описании лазер - это некая стеклянная трубка , в которую поступает свет от некогерентного источника (обычной лампы) , а выходит из нее узконаправленный когерентный световой пучок , при этом выделяется некоторое количества тепла.

   При малой мощности накачки эти электромагнитные волны , которые испускает лазер , некоррелированные , и излучение подобно излучению обычной лампы. Такое некогерентное излучение - это шум , хаос. При повышении внешнего воздействия в виде накачки до порогового критического значения некогерентный шум преобразуется в  ²чистый тон² , то есть испускает число синусоидальная волна - отдельные атомы ведут себя строго коррелированным образом , самоорганизуются.

                            Лампа  ®  Лазер

                              Хаос   ®  Порядок

                              Шум   ®  Когерентное излучение

   В сверхкритической области режим ²обычной лампы² оказывается не стабильным , а лазерный режим стабильным , рисунок 2.9.


Рис. 2.9.  Излучение лазера в до критической (а) и

                         сверхкритической (б) области.

   Видно , что образование структуры в жидкости и в лазере формально описывается весьма сходным образом . Аналогия связана с наличием тех же самых типов бифуркаций в соответствующих динамических уровнях.

   Подробнее этот вопрос рассмотрим в практической части , в 3 главе.

2.3.2.  ХИМИЧЕСКИЕ  СИСТЕМЫ .

   В этой области синергетика сосредотачивает свое внимание на тех явлениях , которые сопровождаются образованием макроскопических структур . Обычно если дать реагентам про взаимодействовать, интенсивно перемешивая реакционную смесь, то конечный продукт получается однородный . Но в некоторых реакциях могут возникать временные, пространственные или смешанные ( пространственные - временные) структуры . Наиболее известным примером может служить реакция Белоусова - Жаботинского .


      2.3.2а.  РЕАКЦИЯ  БЕЛАУСОВА - ЖАБОТИНСКОГО.

    Рассмотрим реакцию Белоусова -Жаботинского . В колбу сливают в определенных пропорциях Ce2(SO4) , KBrO3 , CH2(COOH)2, H2SO4 , добавляют несколько капель индикатора окисления - восстановления - ферроина и перемешивают . Более конкретно - исследуются окислительно - восстановительные реакции

                          Ce 3+_ _ _ Ce 4+ ;  Ce 4+_ _ _ Ce 3+

в растворе сульфата церия , бромида калия , малоковой кислоты и серной кислоты . Добавление феррогена позволяет следить за ходом реакции по изменению цвета ( по спектральному поглащению ) . При высокой концентрации реагирующих веществ , превышающих критическое значение сродства , наблюдаются необычные явления .




При составе

              сульфат церия - 0,12 ммоль/л

              бромида калия - 0,60 ммоль/л

              малоковой кислоты - 48 ммоль/л

              3-нормальная серная кислота ,

               немного ферроина

При 60 С изменение концентрации ионов церия приобретает характер релаксационных колебании - цвет раствора со временем периодически изменяется от красного (при избытке Се3+ ) до синего ( при избытке Се 4+) , рисунок 2.10а .

              Рис. 2.10.  Временные (а) и пространственные (б)

                               периодические структуры в реакции

                                Белоусова - Жаботинского.

...Такая система и эффект получили название химические часы . Если на реакцию Белоусова - Жаботинского накладывать возмущение - концентрационный или температурный импульс , то есть вводя несколько миллимолей бромата калия или прикасаясь к колбе в течении нескольких секунд , то после некоторого переходного режима будут снова совершаться колебания с такой же амплитудой и периодом , что и до возмущения . Диссипативная

Белоусова - Жаботинского , таким образом , является ассимптотически устойчивой . Рождение и существование незатухающих колебаний в такой системе свидетельствует о том , что отдельные части системы действуют согласованно с поддержанием определенных соотношений между фазами . При составе

                   сульфата церия - 4,0 ммоль/л,

                   бромида калия - 0,35 ммоль/л,

                   малоковой кислоты - 1,20 моль/л,

                   серной кислоты - 1,50 моль/л,

                   немного ферроина

при 20 С в системе происходят периодические изменения цвета с периодом около 4 минут . После нескольких таких колебаний спонтанно возникают неоднородности концентрации и образуются на некоторое время ( 30 минут ) , если не подводить новые вещества , устойчивые пространственные структуры , рисунок 2.10б . Если непрерывно подводить реагенты и отводить конечные продукты , то структура сохраняется неограниченно долго .


2.3.3. БИОЛОГИЧЕСКИЕ  СИСТЕМЫ .

   Животный мир демонстрирует множество высокоупорядоченных структур и великолепно функционирующих . Организм как целое непрерывно получает потоки энергии ( солнечная энергия , например , у растений ) и веществ ( питательных ) и выделяет в окружающую среду отходы жизнедеятельности . Живой организм - это система открытая . Живые системы при этом функционируют определенно в дали от равновесия . В биологических системах , процессы самоорганизации позволяют биологическим системам ²трансформировать² энергию с молекулярного уровня на макроскопический . Такие процессы , например , проявляются в мышечном сокращении , приводящим к всевозможным движениям , в образовании заряда у электрических рыб , в распознавании образов , речи и в других процессах в живых системах. Сложнейшие биологические системы являются одним из главных объектов исследования в синергетике . Возможность полного объяснения особенностей биологических систем , например , их эволюции с помощью понятий открытых термодинамических систем и синергетики в настоящее время окончательно неясна . Однако можно указать несколько примеров явной связи между понятийным и математическим аппаратом открытых систем и биологической упорядоченностью.

   Более конкретно биологические системы мы рассмотрим в 3 главе , посмотрим динамику популяций одного вида  и систему ²жертва - хищник² .

2.3.4.  СОЦИАЛЬНЫЕ  СИСТЕМЫ .

   Социальная система  представляет собой определенное целостное образование , где основными элементами являются люди , их нормы и связи . Как целое система образует новое качество , которое не сводится к сумме качеств ее элементов . В этом наблюдается некоторая аналогия с изменением свойств при переходе от малого к    очень большому числу частиц в статической физике - переход от динамических к статическим закономерностям . При этом весьма очевидно , что всякие аналогии с физико - химическими и биологическими системами весьма условны , поэтому проводить аналогию между человеком и молекулой или даже нечто подобное было бы не допустимым заблуждением . Однако , понятийный и математический аппарат нелинейной неравновесной термодинамики и синергетики оказываются полезными в описании и анализе элементов самоорганизации в человеческом обществе.

   Социальная самоорганизация - одно из проявлений спонтанных или вынужденных процессов в обществе , направленная на упорядочение жизни социальной системы , на большее саморегулирование. Социальная система является системой открытой способная , даже вынужденная обмениватся с внешним миром информацией , веществом , энергией. Социальная самоорганизация возникает как результат целеноправленных индивидуальных действий ее составляющих.

   Рассмотрим самоорганизацию в социальной системы напримере урбанизации зоны . Проводя анализ урбанизации географических зон можно предположить , что рост локальной заселенности данной территории будет обусловлен наличием в этой зоне рабочих мест . Однако , здесь существует некоторая зависимость : состояние рынка , определяющего потребность в товарах и услугах и занятости . Отсюда возникает механизм нелинейной обратной связи в процессе роста плотности населения. Такая задача решается на основе логистического уравнения , где зона характеризуется ростом ее производительности  N , новых экономических функций  S - функция в локальной области  i  города. Логистическое уравнение описывает эволюцию численности населения и может быть тогда представлена в виде

                      dni

¾    =   Кni(N + å Rk Sik - ni) - dni         ( 2.13 )

dt                         k


где  Rk   вес данной к - ой  функции , ее значимость . Экономическая функция изменяется с ростом численности : определяется спросом на к - й  продукт в  i - й  области в зависимости от увеличения численности населения и конкуренции предприятий в других зонах города . Появление новой экономической функции играет роль социально экономической флуктуации и нарушает равномерное распределение плотности населения. Такие численные расчеты по логистическим уравнениям могут быть полезны прогнозировании многих проблем.


ПОСТАНОВКА  ЗАДАЧИ.


   В рассмотренных примерах в литературе имеются лишь общие выводы и заключения , не приведены конкретные аналитические расчеты или численные .

   Целью настоящей дипломной работы является аналитические и численные исследования самоорганизации различных систем .







ГЛАВА 3

   АНАЛИТИЧЕСКИЕ  И ЧИСЛЕННЫЕ  ИССЛЕДОВАНИЯ 

   САМООРГАНИЗАЦИИ  РАЗЛИЧНЫХ  СИСТЕМ.

3.1.       ЯЧЕЙКИ  БЕНАРА .


   Для того , чтобы экспериментально изучить структуры , достаточно иметь сковороду , немного масла и какой ни будь мелкий порошок , чтобы было заметно движение жидкости . Нальем в сковороду масло с размешанным в нем порошком и будем подогревать ее снизу (рис. 3.1)

Рис. 3.1. Конвективные ячейки Бенара.

   Если дно сковороды плоское и нагреваем мы ее равномерно , то можно считать , что у дна и на поверхности поддерживаются постоянные температуры , снизу -  Т1 , сверху -  Т2 . Пока разность температуры  DТ = Т1 - Т2 невелика , частички порошка неподвижны , а следовательно , неподвижна и жидкость .

   Будем плавно увеличивать температуру Т1 . С ростом разности температур до значения  DТc  наблюдается все та же картина , но когда  DТ > DТc , вся среда разбивается на правильные шестигранные ячейки (см. Рис. 3.1) в центре каждой из которых жидкость движется вверх , по кроям вниз . Если взять другую сковороду , то можно убедиться , что величина возникающих ячеек практически не зависит от ее формы и размеров . Этот замечательный опыт впервые был проделан Бенаром в начале нашего века , а сами ячейки получили название ячеек Бенара .

   Элементарное качественное объяснения причины движения жидкости заключается в следующем . Из-за теплового расширения жидкость расслаивается , и в более нижнем слое плотность жидкости  r1  меньше , чем в верхнем  r2  . Возникает инверсный градиент плотности , направленный противоположно силе тяжести . Если выделить элементарный объем  V , который немного смещается вверх в следствии возмущения , то в соседнем слое архимедова сила станет больше силы тяжести , так как  r2  >  r1 . В верхней части малый объем , смещаясь вниз , поподает в облость пониженной плотности , и архимедова сила будет меньше силы тяжести  FA < FT  , возникает нисходящее движение жидкости . Направление движения нисходящего и восходящего потоков в данной ячейке случайно , движение же потоков в соседних ячейках , после выбора направлений в данной ячейке детерминировано . Полный поток энтропии через границы системы отрицателен , то есть система отдает энтропию , причем в стационарном состоянии отдает столько , сколько энтропии производится внутри системы (за счет потерь на трение).

                     dSe        q        q                  T1 - T2

¾   =   ¾  -   ¾    = q *    ¾¾¾    < 0      (3.1)

dt          T2        T1               T1 * T2

   Образование именно сотовой ячеистой структуры объясняется минимальными затратами энергии в системе на создание именно такой формы пространственной структуры . При этом в центральной части ячейки жидкость движется вверх , а на ее периферии - вниз.

   Дальнейшее сверхкритическое нагревание жидкости приводит к разрушению пространственной структуры - возникает хаотический турбулентный режим.

       Рис. 3.2.   Иллюстрация возникновения тепловой

                         конвекции в жидкости .

   К этому вопросу прикладывается наглядная иллюстрация возникновения тепловой конвекции в жидкости .

3.2 ЛАЗЕР , КАК САМООРГАНИЗУЮЩАЯСЯ СИСТЕМА.

   Во второй главе этот вопрос мы уже рассматривали . Здесь же , рассмотрим простую модель лазера .

   Лазер - это устройство , в котором в процессе стимулированного излучения порождаются фотоны .

   Изменение со временем числа фотонов  n  , или другими словами , скорость порождения фотонов , определяется уравнением вида :


                   dn / dt  =  «Прирост» - «Потери»          (3.2)


   Прирост обусловлен так называемым стимулированном излучением . Он пропорционален числу уже имеющихся фотонов и числу возбужденных атомов  N . Таким образом :


Прирост  =  G N n             (3.3)


    Здесь  G  -  коэффициент усиления , который может быть получен из микроскопической теории . Член , описывающий потери , обусловлен уходом фотонов через торцы лазера . Единственное допущение , которое мы принимаем , - это то , что скорость ухода пропорциональна числу имеющихся фотонов . Следовательно ,


Потери  =  2cn          (3.4)

 

2c  =  1/ t0 , где  t0 - время жизни фотона в лазере .

   Теперь следует учесть одно важное обстоятельство , которое делает (2.1) нелинейным уравнением вида :

             (3.5)

   Число возбужденных атомов уменьшается за счет испускания фотонов . Это уменьшение  DN  пропорционально числу имеющихся в лазере фотонов , поскольку эти фотоны постоянно заставляют атомы возвращаться в основное состояние .

DN = an              (3.6)

   Таким образом , число возбужденных атомов равно

N = N0 - DN                (3.7)

где  N0 - число возбужденных атомов , поддерживаемое внешней

              накачкой , в отсутствии лазерной генерации.

   Подставляя (3.3) - (3.7) в (3.2) , получаем основное уравнение нашей упрощенной лазерной модели :

            (3.8)

где постоянная   k   дает выражение :

k1  =  aG         

k  =  2c - GN0  ><  0     (3.9)

   Если число возбужденных атомов  N0  (создаваемых накачкой) невелико , то  k  положительно , в то время как при достаточно больших  N0  k - может стать отрицательным . Изменение знака происходит когда

GN0  =  2c               (3.10)

   Это условие есть условие порога лазерной генерации .

   Из теории бифуркации следует , что при  k > 0  лазерной генерации нет , в то время как при   k < 0  лазер испускает фотоны.

   Ниже или выше порога лазер работает в совершено разных режимах .

   Решим уравнение (3.8) и проанализируем его аналитически :

-  это уравнение одномодового лазера .

   Запишем уравнение (3.8) в следующем виде :

   Разделим исходное уравнение на  n2 .

и введем новую функцию   Z :

1/n = n-1 = Z    Þ   Z1 = - n-2    следовательно уравнение примет вид :

перепишем его в следующем виде :

разделим обе части данного уравнения на  -1 , получим


           (3.11)


   Уравнение  (3.11)  - это уравнение  Бернулли , поэтому сделаем следующую замену   Z = U×, где  U  и  V  неизвестные пока функции  n  , тогда     Z1 = U1 V + U V1 .

   Уравнение (3.11)  , после замены переменных , принимает вид

U1 V + UV1 - k UV  =  k1

преобразуем , получим

U1 V + U(V1 - k V) = k1              (3.12)

Страницы: 1, 2, 3, 4, 5




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.