Меню
Поиск



рефераты скачать Синхронные машины. Машины постоянного тока

1) напряжения на якоре двигателя путем изменения тока возбуждения генератора;

2) магнитного потока двигателя путем регулирования тока возбуждения двигателя.

Пуск в ход и получение низких частот вращения производят при максимальном токе возбуждения двигателя, но при уменьшенном токе возбуждения генератора, т.е. при пониженном напряжении. Ослабление магнитного потока двигателя (уменьшение его тока возбуждения) производят только после того, как исчерпана возможность повышения напряжения, т.е. когда установлен максимальный ток возбуждения генератора. Изменение направления вращения двигателя производят путем изменения полярности подводимого к якорю напряжения, для чего изменяют направление тока в обмотке возбуждения генератора.

Система «генератор – двигатель» выгодно отличается тем, что в ней отсутствуют силовые контакторы, реостаты и т.п. Поскольку управление двигателем осуществляют путем регулирования сравнительно небольших токов возбуждения, управление легко поддается автоматизации.

Установки типа «генератор–двигатель» получили широкое распространение в промышленности и на транспорте, в тех устройствах, где требуется регулирование частоты вращения в широких пределах. В транспортных установках генератор приводится во вращение дизелем. В промышленности обычно для привода генератора используют трехфазные синхронные или асинхронные двигатели.

Систему «генератор – двигатель» широко применяют в металлургической промышленности для привода прокатных станов с двигателями мощностью 10 000 кВт и более при диапазоне регулирования частоты вращения 1:200 и точности поддержания заданной частоты вращения (погрешности) менее 1%.

Следует отметить, что в этой системе уменьшение частоты вращения производят с использованием рекуперативного торможения: сначала, увеличивая ток возбуждения двигателя, а затем, постепенно уменьшая ток возбуждения генератора, можно перевести двигатель в генераторный режим и быстро затормозить механизм. При этом накопленная кинетическая энергия якоря и механизма отдается в электрическую сеть.



Рис. 2.77 – Схема регулирования двигателя с независимым возбуждением при питании его от генератора


Если нагрузка толчкообразная, то иногда на валу первичного двигателя, вращающего генератор, ставят маховик, который уменьшает перегрузки первичного двигателя.

Недостатки системы «генератор–двигатель»:

1) большие масса, габариты и стоимость установки;

2) сравнительно низкий к. п. д. (порядка 0,6 – 0,7), так как производится трехкратное преобразование энергии.

В последнее время на транспорте (тепловозы, большие автомобили, корабли и т.п.) вместо генератора постоянного тока в системе «генератор–двигатель» применяют синхронный генератор с полупроводниковым выпрямителем. Это позволяет снизить вес и уменьшить стоимость генератора. В промышленных установках такое усовершенствование не получило широкого распространения, так как из-за выпрямителя теряется возможность рекуперативного торможения.

Система «управляемый выпрямитель–двигатель». Развитие полупроводниковой техники позволило применить для регулирования частоты вращения двигателя управляемый выпрямитель УВП, выполненный на тиристорах, где одновременно с выпрямлением производится регулирование выпрямленного напряжения (рис. 2.78). Применение системы «управляемый выпрямитель – двигатель» позволяет увеличить коэффициент полезного действия и уменьшить массу установки.


Рис. 2.78. Схема регулирования двигателя с независимым возбуждением при питании его от управляемого вентильного преобразователя


Если требуется быстрая остановка механизма, с последующим реверсированием, то для осуществления рекуперативного торможения параллельно с выпрямителем ставят инвертор, т.е. еще один полупроводниковый преобразователь, позволяющий отдавать электрическую энергию от машины постоянного тока в сеть переменного тока.

Недостатком системы «управляемый выпрямитель–двигатель» является низкий коэффициент мощности при пониженном выходном напряжении. Кроме того, несколько ухудшается коммутация двигателя из-за пульсаций тока якоря. Особенно велики пульсации тока при питании от сети однофазного тока (электровозы переменного тока), где обеспечение удовлетворительной коммутации вырастает в большую проблему.

В настоящее время система «управляемый выпрямитель–двигатель» имеет меньшую надежность, чем система «генератор – двигатель», из-за сложности полупроводникового оборудования, особенно системы управления.

Импульсное регулирование частоты вращения. В последние годы в связи с развитием полупроводниковой техники широко применяют импульсный метод регулирования частоты вращения двигателей постоянного тока. При этом на двигатель с помощью импульсного прерывателя периодически подаются импульсы напряжения определенной частоты.

Импульсный прерыватель (рис. 2.79, а) состоит из входного фильтра Lф-Сф, электронного ключа ТK (транзисторного или тиристорного), обратного диода Д и индуктивности L. В период времени τ, когда электронный ключ замкнут (транзистор или тиристор открыт), питающее напряжение U подается полностью на якорь двигателя, и его ток ia увеличивается (рис. 10–79, б); когда электронный ключ разомкнут (транзистор или тиристор заперт), ток продолжает протекать через якорь двигателя и обратный диод Д под действием электромагнитной энергии, запасенной в индуктивностях La + L цепи якоря; при этом ток ia уменьшается. Частота следования импульсов при номинальном режиме обычно составляет 200–400 Гц, вследствие чего период Т примерно на два порядка меньше постоянной времени цепи якоря. Поэтому за время импульса τ ток в двигателе не успевает значительно возрасти, а за время паузы – τ) – уменьшиться.



Рис. 2.79 – Схема импульсного регулирования двигателя постоянного тока (а); графики изменения напряжения и тока при работе двигателя в режиме непрерывного тока (б)


Среднее напряжение, подаваемое на обмотку якоря,


,                                           (2.99)


где α = τ/Т – коэффициент регулирования напряжения, равный относительной длительности включения ключа ТК.

При этом частота вращения двигателя


,                                           (2.100)


где = Iср–среднее значение тока якоря.

Изменение тока при работе импульсного прерывателя ΔI = Iмакс – Iмин определяется по приближенной формуле


,                                                 (2.101)


где La+L – индуктивность цепи якоря двигателя.

Если параметры схемы выбраны так, что пульсация тока не превосходит 5–10%, то работа двигателя практически не отличается от работы двигателя при постоянном напряжении. Скоростные и механические характеристики двигателя 1, 2 и 3 (рис. 2.80), полученные при различных напряжениях, подаваемых на обмотку якоря, в таком режиме работы аналогичны соответствующим характеристикам двигателя при изменении питающего напряжения U.

Рис. 2.80 – Скоростные и механические характеристики двигателя с параллельным возбуждением при импульсном регулировании


При уменьшении нагрузки двигателя с параллельным возбуждением возрастают пульсации тока якоря, и при некоторой критической нагрузке наступает режим прерывистых токов. Поскольку условие = 0 имеет место при Е = U, частота вращения при идеальном холостом ходе n0 = U/(сеФ) не будет зависеть от времени т, т.е. от коэффициента регулирования напряжения α. Благодаря этому при некоторой критической частоте вращения nкр, когда двигатель переходит в режим прерывистых токов, угол наклона скоростных и механических характеристик к оси абсцисс резко изменяется. В диапазоне n0> n> nкр эти характеристики имеют примерно такую же форму, как и при регулировании частоты вращения путем включения реостата в цепь якоря. Критическая частота вращения


,                                         (2.102)


где β = Т/Та. Здесь Та = (L + )/∑r – постоянная времени цепи обмотки якоря.

Среднее напряжение Uср, подаваемое на двигатель, регулируется путем изменения либо продолжительности периода Т между подачей управляющих импульсов на электронный ключ ТK при τ=const (частотно-импульсное регулирование), либо времени τ при постоянном значении Т (широтно-импулъсное регулирование).

Используют также комбинированное регулирование, при котором изменяется как Т, так и τ.

В настоящее время импульсное регулирование двигателей малой мощности и микродвигателей осуществляют с помощью импульсных прерывателей, в которых коммутирующими элементами являются транзисторы. Для регулирования двигателей средней и большой мощностей применяют прерыватели с тиристорами. Так как тиристор, в отличие от транзистора, является не полностью управляемым вентилем, то для его запирания применяют различные схемы искусственной коммутации, обеспечивающие прерывание проходящего тока путем подачи на его электроды обратного напряжения.



Рис. 2.81 – Схемы включения двигателя постоянного тока через тиристорный импульсный прерыватель при частотно-импульсном и широтно-импульсном регулировании


На рис. 2.81 показаны две простейшие схемы импульсных тиристорных прерывателей. Схему, изображенную на рис. 2.81, а, используют при частотно-импульсном регулировании Тиристор Т отпирается путем подачи импульсов гока управления на его управляющий электрод, запирание же его осуществляется с помощью коммутирующего конденсатора Ск Перед включением тиристора конденсатор Ск заряжен до напряжения U. При подаче отпирающего импульса на управляющий электрод тиристор Т открывается и через двигатель начинает проходить ток ia. Одновременно происходит перезаряд конденсатора Скчерез резонансный контур, содержащий индуктивность L1. После окончания перезаряда, когда полярность конденсатора изменится, к тиристору будет приложено обратное напряжение. При этом он восстанавливает свои запирающие свойства и прохождение тока через тиристор прекращается. В дальнейшем конденсатор заряжается через нагрузку и схема оказывается подготовленной для последующего отпирания тиристора. Время открытого состояния тиристора определяется параметрами резонансной цепи:

Схему, изображенную на рис. 2.81, б, используют при широтно-импульсном и комбинированном регулирований. В этом случае импульсный прерыватель имеет два тиристора: главный Т1 и вспомогательный Т2. Запирание главного тиристора Т1 осуществляется коммутирующим конденсатором Ск, который подключается к тиристору Т1 в требуемые моменты времени вспомогательным тиристором Т2. После запирания тиристора Т1 коммутирующий конденсатор заряжается от источника питания через тиристор Т2 и якорь двигателя, а после повторного открытия главного тиристора Т1 перезаряжается через цепочку, содержащую индуктивность L1 и диод Д1, и приобретает полярность, требуемую для последующего запирания тиристора Т1.

Торможение при импульсном регулировании. При работе двигателя от импульсного прерывателя можно выполнить его рекуперативное и динамическое торможения. Наиболее интересная особенность рекуперативного торможения при импульсном регулировании – возможность осуществления его при величине э. д. с. двигателя, меньшей напряжения сети. В связи с этим рекуперативное торможение может осуществляться почти до полной остановки.

При рекуперативном торможении импульсный прерыватель ИП включают параллельно якорю двигателя, диод Д–между якорем и питающей сетью. При отпирании прерывателя ИП якорь машины вместе с индуктивностью L замыкается накоротко. При этом увеличивается ток ia и происходит накопление электромагнитной энергии в индуктивностях L + La, а возникающая э. д. с. самоиндукции eL уравновешивает э. д. с. машины Е. При запирании прерывателя ИП ток ia под действием э. д. с. самоиндукции протекает через диод Д и накопленная энергия отдается в сеть. Среднее значение тока, отдаваемого в сеть, определяется разностью между средней э. д. с. якоря Е и напряжением сети U.

Из закона сохранения энергии IaсрE=Iс.срU имеем


.                                           (2.103)


Следовательно, по мере уменьшения частоты вращения якоря ток Iс.ср, отдаваемый в сеть, уменьшается, хотя ток якоря может оставаться постоянным, а следовательно, неизменным будет оставаться и тормозящий электромагнитный момент.


Рис. 2.104 – Схема рекуперативного торможения двигателя постоянного тока при импульсном регулировании


По мере снижения частоты вращения n и э. д. с. Е для поддержания требуемого значения тока увеличивают частоту тока f при частотно-импульсном регулировании или длительность импульса τ при широтно-импульсном регулировании. При малой частоте вращения, когда α увеличивается до единицы, якорь машины остается все время замкнутым накоротко, и отдача энергии в сеть прекращается. Однако ток протекает через якорь и режим торможения осуществляется практически до полной остановки.

Частота вращения nкр, при которой прекращается рекуперативное торможение,


,


где rи.п–сопротивление элементов импульсного прерывателя (тиристоров и индуктивности L), по которым замыкается ток ia.

Динамическое торможение осуществляют аналогично, однако в схеме вместо сети и фильтра LФ-Сф включают реостат, в котором гасится энергия, отдаваемая машиной.

Импульсное регулирование широко применяют при питании двигателей от сети постоянного тока, а также в автономных устройствах, где необходимо использовать аккумуляторы электрической энергии.


2.15 Универсальные коллекторные двигатели


В устройствах автоматики и различных электробытовых приборах широко применяют универсальные коллекторные двигатели мощностью от нескольких ватт до нескольких сотен ватт, которые могут работать от источника как постоянного, так и однофазного тока.

Устройство двигателя. Универсальный коллекторный двигатель устроен принципиально так же, как и двигатель постоянного тока с последовательным возбуждением. Отличие универсального двигателя от машины постоянного тока состоит в том, что магнитная система выполнена полностью шихтованной, а катушки обмотки возбуждения имеют две секции и промежуточные выводы. Выполнение статора и ротора машины шихтованными обусловлено тем, что при работе на переменном токе они пронизываются переменным магнитным потоком; секционирование же обмотки возбуждения вызвано тем, что в этом режиме из-за падения напряжения в индуктивном сопротивлении двигателя номинальная частота вращения оказывается меньшей, чем при работе на постоянном токе: Для выравнивания частот вращения при работе на постоянном токе в цепь якоря включают все витки обмотки возбуждения, а при работе на переменном токе – только часть их, вследствие чего соответственно уменьшается магнитный поток машины.


Рис. 2.104 – Схема включения универсального коллекторного двигателя


В универсальных коллекторных двигателях, выпускаемых отечественной промышленностью, обмотку возбуждения разделяют на две части и включают с обеих сторон якоря. Такое включение (симметрирование обмотки) позволяет уменьшить радиопомехи, создаваемые двигателем.

При работе на постоянном токе универсальный коллекторный двигатель ведет себя так же, как двигатель постоянного тока с последовательным возбуждением. Работа же двигателя на переменном токе имеет ряд специфических особенностей.

Электромагнитный момент при работе на переменном токе. В рассматриваемом режиме ток якоря ia и магнитный поток Ф изменяются по синусоидальному закону:


;                                      (2.104)

,                                                  (2.105)


где γ – угол, возникающий из-за потерь мощности в стали. Мгновенное значение электромагнитного момента


.                        (2.106)


Графики изменения тока ia, магнитного потока Ф и электромагнитного момента т показаны на рис. 2.105, а. Очевидно, что момент двигателя можно представить в виде двух составляющих: постоянной


                                      (2.107а)


и переменной, которая изменяется с двойной частотой,


                                        (2.107б)


Рис. 2.105 – Графики изменения тока, потока и электромагнитного момента универсального коллекторного двигателя и его векторная диаграмма при работе на переменном токе


Электромагнитный момент двигателя является переменным, а в отдельные промежутки времени даже тормозным, однако якорь двигателя вращается с равномерной частотой, так как он имеет сравнительно большой момент инерции. Среднее значение момента

Характеристики двигателя при работе на переменном токе

Векторная диаграмма однофазного коллекторного двигателя (рис. 2.106, б) строится на основании уравнения


                        (2.108)


где ∑r и ∑x – суммы активных и реактивных сопротивлений в цепи обмотки якоря.

Э. д. с, индуктируемая в обмотке якоря,


,                                           (2.109)

.


Из (6.109) можно получить зависимость частоты вращения от тока якоря:


.                               (2.110)


На основании (2.108) и (2.109) строятся зависимости n = f(Iа), M = f(Ia) и n= f(M). Так как способ возбуждения машины при работе на постоянном и переменном токе остается неизменным, а формулы (2.108) и (2.109) для частоты вращения n и момента М имеют такую же структуру, как и формулы (2.76) и (2.77а), механические характеристики двигателя при работе в двух указанных режимах будут приблизительно одинаковыми. Однако при переменном токе в числителе (2.109) появляется дополнительный член jİаx сдвигающий механическую характеристику двигателя в область более низких частот вращения (рис. 2.106, а, кривая 2). Для того чтобы приблизить ее к механической характеристике, имеющей место при работе на постоянном токе (кривая 1), часть витков обмотки возбуждения при переходе на питание переменным током отключают, т.е. уменьшают магнитный поток машин. При этом обеспечивается одинаковая номинальная частота вращения двигателя в обоих режимах работы (кривая 3).

Рис. 2.106 – Механические и рабочие характеристики универсального коллекторного двигателя


В связи с уменьшением магнитного потока двигателя при работе на переменном токе его магнитная система оказывается менее насыщенной, чем при работе на постоянном токе. Поэтому при работе в рассматриваемом режиме зависимость M = f(Ia) приближается к параболической; зависимость n = f(Ia) к гиперболической в большем диапазоне изменения тока, чем при постоянном токе, а механическая характеристика становится более мягкой.

Рабочие характеристики двигателя при его работе на постоянном (сплошные линии) и переменном (штриховые линии) токе имеют приблизительно одинаковую форму. При переменном токе ток якоря больше, чем при постоянном токе, из-за появления реактивной составляющей и увеличения активной составляющей вследствие возрастания потерь в стали. По этим же причинам к. п. д. двигателя при переменном токе меньше, чем при постоянном.

Регулирование частоты вращения при работе на постоянном токе осуществляют путем включения в цепь якоря реостата, изменения питающего напряжения и тока возбуждения (путем шунтирования обмотки возбуждения реостатом). При переменном токе регулирование частоты вращения осуществляют в основном изменением питающего напряжения; реже–включением реостата в цепь якоря.

Рис. 2.107 – Возникновение реактивной и трансформаторной э. д. с. в универсальном коллекторном двигателе


Коммутация при работе на переменном токе. В этом случае в коммутируемой секции кроме реактивной э. д. с. ер индуктируется еще трансформаторная э.д.с. етр, так как эта секция пронизывается переменным магнитным потоком. Реактивная э.д.с. возникает так же, как и в машине постоянного тока, в результате изменения тока ia в коммутируемой секции при переходе ее из одной параллельной ветви в другую. Однако в данном случае токи +ia и – ia в каждой параллельной ветви (рис. 2.107, а) не остаются постоянными, а изменяются по синусоидальному закону .

Следовательно, реактивная э.д.с. eр, пропорциональная производной di/dt, будет зависеть от величины тока ia в момент коммутации, т.е. в разные моменты времени она будет различной. Если пренебречь периодом коммутации Тк по сравнению с временем Т0 между двумя последовательными коммутациями, то можно считать, что производная


,                                             (2.111)


а реактивная э.д.с.


,                             (2.112)


где  – максимальное значение реактивной э.д.с, которое имеет место при максимальном токе якоря Iam.

Таким образом, реактивная э. д.с. совпадает по фазе с током якоря. Она пропорциональна частоте вращения n (период коммутации Тк обратно пропорционален n) и току якоря Iа, так же как в машинах постоянного тока.

Трансформаторная э.д.с. индуктируется в коммутируемой секции переменным магнитным потоком машины. Так как магнитный поток изменяется по закону Ф = Фmsinωt, то при установке щеток на геометрической нейтрали


,                                   (2.113)


где ωc – число витков в секции.

Следовательно, если не учитывать небольшого угла γ, то она будет сдвинута относительно реактивной э. д. с. на 90°. Результирующая э.д.с. в коммутируемой секции будет изменяться по синусоидальному закону и в некоторые моменты времени будет иметь максимальное значение


.                                              (2.114)


Установка дополнительных полюсов обеспечивает компенсацию реактивной э.д.с. Трансформаторная же э.д.с. остается нескомпенсированной и создает добавочный ток, замыкающийся через щетки. Это ухудшает коммутацию машины, а следовательно, может вызвать опасное искрение и значительные радиопомехи. Особенно неблагоприятные условия возникают при пуске двигателя, когда трансформаторная э. д. с. достигает большой величины из-за увеличенных значений пускового тока и потока возбуждения.

По указанной причине коллекторные машины переменного тока средней и большой мощностей не получили широкого применения. В коллекторных двигателях малой мощности трансформаторная э.д.с. невелика и практически не ограничивает его нагрузку, как это имеет место в более мощных машинах. Однако срок службы щеток, коллектора и всей машины при работе на переменном токе сокращается по сравнению со сроком службы на постоянном токе.




Список литературы


1.       Копылов И.П. Электрические машины. – М.: Энергоиздат, 2004.

2.       Брускин Д.Э., Зерохович А.Е., Хвостов В.С. Электрические машины. Т. 1,2. – М.:, Высш. шк., 1987.

3.       Токарев Б.Ф. Электрические машины, – М.: Энергоиздат, 1990.

4.       Копылов И.П. Математическое моделирование энергетических машин. Учебник. – М.:, Высш. шк., 2001.

5.       Гольдберг, Свириденко Я.С. Проектирование электрических машин. Учебник для ВТУзов. – М.:, Высш. шк., 2001.

6.       Иванов-Смоленский А.В. Электрические машины. – М.:, Энергия, 1988.

7.       Кацман М.М. Электрические машины. – М.: Энергоиздат, 1990.

8.       Вольдек А.И. Электрические машины. – Л.: Энергия, 1984.


[1] В дальнейшем для обозначения потока первых гармоник магнитного поля, основных гармоник э.д.с. и токов в формулах и на векторных диаграммах будут применяться соответствующие буквенные символы без индекса «1»,

[2] Для обозначения величин в относительных единицах используют те же бук­венные символы, но со звездочками

[3] В генераторном и двигательном режимах чередование полярности главных и добавочных полюсов различно, чем и объясняется наблюдающаяся иногда разница в искрении щеток машины при генераторном и двигательном режимах.

[4] Это не относится к электродвигателям с последовательным возбуждением, в которых коммутационная напряженность машины определяется условиями эксплуатации и при малых частотах вращения может быть большей из-за увеличения тока якоря.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.