Меню
Поиск



рефераты скачать Проектирование системы электроснабжения механического цеха

Проектирование системы электроснабжения механического цеха

Введение


Электрификация обеспечивает выполнение задачи широкой комплексной механизации и автоматизации производственных процессов, что позволяет усилить темпы роста производительности общественного труда, улучшить качество продукции и облегчить условия труда. На базе использования электроэнергии ведется техническое перевооружение промышленности, внедрение новых технологических процессов и осуществление коренных преобразований в организации производства и управлении им. Поэтому в современной технологии и оборудовании промышленных предприятий велика роль электрооборудования, т.е. совокупности электрических машин, аппаратов, приборов и устройств, посредством которых производится преобразование электрической энергии в другие виды энергии и обеспечивается автоматизация технологических процессов.

Электромашиностроение – одна из ведущих отраслей машиностроительной промышленности. Процесс изготовления электрической машины складывается из операций, в которых используется разнообразное технологическое оборудование. При этом основная часть современных электрических машин изготовляется методами поточно-массового производства. Специфика электромашиностроения заключается главным образом в наличии таких процессов, как изготовление и укладка обмоток электрических машин, для чего применяется нестандартизированное оборудование, изготовляемое обычно самими электромашиностроительными заводами.

Электромашиностроение характерно многообразием процессов, использующих электроэнергию: литейное производство, сварка, обработка металлов и материалов давлением и резанием, термообработка и т.д. Предприятия электромашиностроения широко оснащены электрифицированными подъемно-транспортными механизмами, насосными, компрессорными и вентиляторными установками.

Современная энергетика характеризуется нарастающей централизацией производства и распределения электроэнергии. Для обеспечении подачи электроэнергии от энергосистем к промышленным объектам, установкам, устройствам и механизмам служат системы электроснабжения состоящие из сетей напряжением до 1000 В и выше и трансформаторных, преобразовательных и распределительных подстанций. Для передачи электроэнергии на большие расстояния используются сверхдальние линии электропередач (ЛЭП) с высоким напряжением: 1150 кВ переменного тока и 1500 кВ постоянного тока.

В современных многопролетных цехах автомобильной промышленности широко используют комплектные трансформаторные подстанции (КТП), комплектные распределительные установки (КРУ), силовые и осветительные шинопроводы, аппараты коммутации, защиты, автоматики, контроля, учета и так далее. Это создает гибкую и надежную систему электроснабжения, в результате чего значительно уменьшаются расходы на электрообеспечение цеха.

Автоматизация затрагивает не только отдельные агрегаты и вспомогательные механизмы, но во все большей степени целые комплексы их, образующие полностью автоматизированные поточные линии и цехи.

Первостепенное значение для автоматизации производства имеют многодвигательный электропривод и средства электрического управления. Развитие электропривода идет по пути упрощения механических передач и приближения электродвигателей к рабочим органам машин и механизмов, а так же возрастающего применения электрического регулирования скорости приводов.

Целью настоящего дипломного проекта является проектирование электроснабжения механического цеха №5. Основной задачей настоящего проекта является проектирование надежного бесперебойного электроснабжения приемников цеха с минимальными капитальными затратами и эксплуатационными издержками и обеспечение высокой безопасности.



1. Расчетно-технологическая часть

1.1 Общая характеристика технологического процесса проектируемого цеха


Механический цех относится к основному производству машиностроительного предприятия. В нем выполняются операции по обработке деталей после отливки и доведение их до завершенного состояния с последующей отправкой в цех сборки. Преобладает оборудование по обработке металлов резанием. Присутствуют станки массового производства с ЧПУ, а также поточные конвейерные и автоматические линии.

Цех состоит из четырех пролетов, шириной по 12 м. Согласно требуемой технологии обработки изделий цех оснащен современным технологическим оборудованием – это металлорежущие станки, электропечи, точечные и шовные сварочные машины. Имеется общепромышленное оборудование – это подъемно-транспортные механизмы, насосы, вентиляторы

1.2 Характеристика потребителей электрической энергии. Выбор напряжения и схемы электроснабжения приемников цеха


Основными потребителями электрической энергии механического цеха являются металлорежущие станки, точечные и шовные сварочные машины, насосы, вентиляторы, электропечи и краны. Цех оснащен станками различного назначения: токарные, сверлильные, шлифовальные, фрезерные, плоско и круглошлифовальные, заточные, координатно-расточные, МРС с ЧПУ и другие.

Согласно Правилам Устройства Электроустановок электроприемники по бесперебойности электроснабжения относятся ко II и III категории. Электроприемники работают в повторно-кратковременном (ПКР) и длительном режимах.

Важной технической задачей, которую нужно решать при проектировании электроснабжения, является выбор напряжения силовой и осветительной сети. От правильности выбора будут зависеть потери напряжения, электроэнергии и многие другие факторы. Выбор напряжения основывается на сравнении технико-экономических показателей различных вариантов. При выборе напряжения для питания силовых и осветительных потребителей следует отдавать предпочтение варианту с более высоким напряжением, так как чем больше величина U, тем меньше ток в проводах, тем меньше сечение, меньше потери мощности и энергии.

Согласно Правилам Устройства Электроустановок и Правилам Технической Эксплуатации в Российской Федерации для электроустановок с U ≤ 1000 В приняты следующие стандартные напряжения переменного тока: 110 В, 220 В, 380 В, 660 В. Наибольшее распространение на предприятиях машиностроительной промышленности получила система трехфазного тока напряжением 380/220 В частотой 50 Гц с глухозаземленной нейтралью. Широко используется так же система напряжения 660/380 В.

Для проектируемого цеха применяем систему трёхфазного переменного тока с напряжением 380/220 В с глухозаземлённой нейтралью, что позволяет питать от одних и тех же трансформаторов силовые и осветительные нагрузки. Силовые потребители питаются напряжением 380 В, а освещение напряжением 220 В. Согласно требований Техники Безопасности питание цепей управления и местного освещения осуществляется пониженным напряжением: Цепи управления питаются напряжением 110 В, освещение 12 В или 24.

При питании силовой и осветительной сети от однотрансформаторной ТП возникает мигание света осветительных приборов, так как происходит запуск мощных двигателей и возникают большие пусковые токи. Поэтому питание осуществляют от двухтрансформаторной КТП. Силовые приемники с большими и частыми пиковыми нагрузками нужно подключить к одному из трансформаторов КТП, а более «спокойную» нагрузку к другому трансформатору. В этом случае рабочее освещение необходимо запитывать от трансформатора со «спокойной» нагрузкой, а аварийное освещение от трансформатора с «неспокойной» нагрузкой, с тем чтобы обеспечить надлежащее качество рабочего освещения.

Выбор схемы электроснабжения приемников цеха зависит от многих факторов:

·                    мощности отдельных потребителей;

·                    расположения потребителей;

·                    площади цеха;

·                    технологического процесса цеха, определяющего категорию электроприемников по бесперебойности электроснабжения.

Система электроснабжения должна удовлетворять следующим требованиям:

·                    удобство и надежность обслуживания;

·                    надлежащее качество электроэнергии;

·                    бесперебойность и надежность электроснабжения как в нормальном, так и в аварийном режиме;

·                    экономичность системы, то есть наименьшие капитальные затраты и эксплуатационные издержки;

·                    гибкость системы, то есть возможность расширения производства без существенных дополнительных затрат.

Для передачи и распределения электроэнергии к цеховым потребителям применяем наиболее совершенную схему блока «трансформатор – магистраль», что удешевляет и упрощает сооружение цеховой подстанции. Такие схемы очень распространены и обеспечивают гибкость системы и ее надежность, а также экономичность в расходе материалов.

Электроснабжение выполняется магистральными шинопроводами, запитываемыми непосредственно от РУ – 0,4 цеховой КТП, к которым присоединяются распределительные шинопроводы, а от них радиальными линиями осуществляется питание всех электроприемников. Ответвления от ШМА к ШРА и от ШРА к отдельным приемникам выполняются проводами в тонкостенных трубах

1.3 Расчет осветительной и силовой нагрузки

1.3.1 Расчет мощности на электроосвещение цеха

Достаточная освещённость рабочей поверхности – это необходимое условие для обеспечения нормальной работы человека и высокой производительностью труда.

Для проектируемого цеха принимаем систему комбинированного освещения, состоящего из общего равномерного и местного освещения.

Расчёт мощности ведём методом «удельных мощностей». Суть этого метода в том, что установленная мощность светильников зависит от нормируемой освещённости цеха, высоты подвеса светильника, площади освещаемой поверхности, коэффициентов отражения потолка, рабочей поверхности и стен.

Освещение в цехе производим лампами ДРЛ. Согласно заданию среда в цехе нормальная, принимаем тип светильника УПДДРЛ. [1]

Норма освещённости согласно СНиП цехов машиностроительных заводов при освещении их лампами ДРЛ и люминесцентными лампами в зависимости от типа производства может лежать в пределах от 100 – 300 Лк.

Норму освещённости для производственных помещений цеха принимаем Енор. = 200 Лк. [1]

Высота подвеса светильника над рабочей поверхностью Нр., м определяется, в соответствии с рисунком 1, по формуле:


Нр. = Н – hc. – hp., м (1)


где Н – высота помещения цеха, м.

Н = 6 м (по заданию);

hc. – расстояние светильников от перекрытия, м. hc. = 0,7 м;

hp. – высота рабочей поверхности над полом, м. hр. = 0,8 м.

Нр. = 6 – 0,7 – 0,8 = 4,5

Площадь освещаемой поверхности данного пролёта Sпр., м2:


Sпр. = B × L, м2 (2)


где B – ширина цеха, м. B = 12 м (по заданию);

L – длина цеха, м. L = 72 м (по заданию).

Sпр. = 12 × 72 = 864 м2

Удельная мощность освещённости лампы ρуд., Вт/м2, определяется исходя из удельной мощности освещения при освещенности 100 Лк.

Для светильников УПД ДРЛ Енор. = 100 Лк, ρуд. = 5,4 Вт/м2 [1]

Для светильников УПД ДРЛ Енор. = 200 Лк, ρуд. = 5,4 ´ 2 = 10,8 Вт/м2

Допустимая мощность рабочего освещения одного пролета Рр.о.пр., Вт:


Рр.о.ц. = ρуд. × Sпр. (3)


Рр.о.пр. = 10,8 × 864 = 9331,2 Вт

Выбираем мощность лампы ДРЛ [1] и технические данные заносим в
 таблицу 1.

 


Таблица 1 Технические данные лампы ДРЛ

Тип лампы

Светильник

Рн., Вт

Uл., В

Ф, Лм

Срок службы, час

Размер лампы, мм

Ток лампы, А

D

L

рабочий

пусковой

ДРЛ

400

УПД

ДРЛ

400

135

19000

10000

122

292

3,25

7,15


Число светильников рабочего освещения по пролету Nсв, шт.


Nсв = Рр.о.св/Рл = 9331,2/400 = 23,3 шт. (4)

Принимаем число светильников для пролета Nсв = 24 шт.

При размещении светильников учитываем требования качества освещения, в частности направление света, а так же доступность их для обслуживания. Расположение светильников в цехе производим в соответствии с рисунком 2.

 

 



Рисунок 2 – расположение светильников в пролёте

Число пролетов в цехе i = 4 (по заданию)

Мощность рабочего освещения производственных помещений цеха Pp.о, кВт


Pp.о = Nсв х Рл х i = 24 х 400 х 4 = 38400 Вт = 38,4 кВт (5)


В случае отключения рабочего освещения для продолжения работы предприятия предусматривается аварийное освещение. Мощность аварийного освещения производственных помещений цеха Рав., Вт принимают 10% (0,1) от рабочего освещения.

Рав. = 0,1 × 38,4 = 5,76 кВт

Для аварийного освещения выбираем лампы накаливания типа Г, мощностью 500 Вт с теми же светильниками. [1]

 

Таблица 2 Технические данные лампы аварийного освещения

Тип лампы

Светильник

Рн., Вт

Uл., В

Ф, Лм

Размер лампы, мм

D

L

H

Г

УПД

500

220

8300

112

240

180


Мощность освещения бытовых помещений Рбп, кВт определяем по формуле:


Рбп = Руд.бп ´ Sбп (6)


Согласно задания: Руд.бп = 25 Вт/м2; Sбп = 6 ´ 36 = 216 м2

Рбп = 25 ´ 216 = 5400 Вт = 5,4 кВт

Общая мощность электроосвещения цеха Росв, кВт

Росв = Рро + Рбп = 38,4 + 5,4 = 43,8 кВт



1.3.2 Расчёт электрических нагрузок

Расчет ведем методом упорядоченных диаграмм, по максимальной мощности, потребляемой цехом в течение первой 30 минутной наиболее загруженной смены.

Этот метод учитывает режим работы приемников, отличие их друг от друга по мощности и их количество.

В каждом пролете устанавливается по два ШРА на стойках или кронштейнах вдоль электроприемников.

Мощности электроприемников, работающих в ПКР, приводим к ПВ = 100% и выражаем в кВт.

Пример расчета: [2]

1 Номинальная мощность, приведенная к ПВ = 100%, Рн.пв = 100%, кВт

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.