Меню
Поиск



рефераты скачать Общая Физика (лекции по физике за II семестр СПбГЭТУ "ЛЭТИ")

Заряды, входящие в состав молекул диэлектрика, называются связанными. Они не могут покидать пределы молекулы, в которую они входят.

Заряды не входящие как в состав молекул диэлектрика, так и в сам диэлектрик называются сторонними.

Поле в диэлектрике является суперпозицией полей сторонних и связанных зарядов и называется микроскопическим (или истинным).

ЕМИКРО = ЕСТОР + ЕСВЯЗ

Микроскопическое поле в пределах диэлектрика непостоянно, поэтому

Е0 = <ЕМИКРО> = <ЕСТОР> + <ЕСВЯЗ>

<ЕСВЯЗ> = E’

Макроскопическое поле:

E = E0 + E’

При отсутствии диэлектрика макроскопическое поле равно

Е = Е0 = <ЕСТОР>.

Если сторонние заряды неподвижны, то поле ЕМИКРО обладает теми же свойствами, как электростатическое поле в вакууме.

При определении суммарного действия всех электронов имеет значение и центр масс  отрицательных зарядов.

                                      ®

                  q-                  l                 q+

 



          ®                            ® 

r-                                     r+




  ®                        ®

 r- = (i = 1åNriqi-)/( i = 1åNqi-)

®

r+ = (j = 1åNrjqj+)/( j = 1åNqj+)

Полярные и неполярные молекулы во внешнем поле приводят развороту диполя в направлении поля. Неполярные молекулы приобретают электрический момент. Они поляризуются, от чего возникает дипольный момент, направленный вдоль внешнего поля. Молекула ведет себя как упругий диполь.






















21. Диполь в однородном и неоднородном электрических полях:

В однородном поле:

®

 
                                             ® 

                                              E

                 l             +q

                                     Fk

     ®

     M       a

Fk  (X)-q



M = Fk*l*sina = q*E*l*sina =              = P*E*sina, где P – дипольный момент.

®    ®   ®                   

M = [P x E]

®

M – направлен «от нас»

dA = Mda = P*E*sina da

dA = dW                ®   ®

W = -P E cosa = -(P E)*

* - cкалярное произведение.

В неоднородном поле:


                                       ®             ®   

X

 
                        +q           F+             Е

                 l

              -q     DX

  ®      

  F-


DF = (F+) – (F-) = q*DE =                   = q*¶E/¶X*l*cosa = P*¶E/¶X*cosa =       = /кроме вращающего момента на диполь действует сила, зависящая от угла a, если угол острый, то диполь «втягивается» внутрь поля/ =              = ¶(PEcosa)/¶X = -¶W/¶X.






































22. Поляризация диэлектриков:

®

Р – параметр, описывающий состояние диэлектрика в электрическом поле.

®            ®     

P = (i = 1åNPi)/DV


 


(-+)(-+)        (-+)(-+)

(-+)(-+)        (-+)(-+)

(-+)(-+)        (-+)(-+)

(-+)(-+)        (-+)(-+)

             (-+)(-+)        (-+)(-+)                ®

         (-+)(-+)       (-+)(-+)                 Е

(-+)(-+)        (-+)(-+)

(-+)(-+)        (-+)(-+)

(-+)(-+)        (-+)(-+)

На поверхности возникают связанные заряды с плотностью gСВЯЗ.

®        ®  

P = He0E

H – коэффициент диэлектрической восприимчивости;

Е – результирующий вектор.

 



                                                    E



        DS                 l

                          ®                         n

                     P


  n

                       d


               

            -g                 +g

P*DV – суммарный дипольный момент молекул внутри цилиндра.

DV = DS*l*cosa

P*DV = P*DS*l*cosa = q*l

q = gСВЯЗ*DS

P*DS*cosa*l = gСВЯЗ*DS*l

P*cosa = gСВЯЗ

gСВЯЗ = He0E, где Е – результирующее поле в диэлектрике.

®  ®    ®

Е = Е0 + Е’

Внешнее поле должно ослабляться:

®      ®  ®      ®         ®             

Д = e0Е + Р = e0E + He0E =

                  ®        ®  

= (1 + H)e0E = ee0E.






















23. Поле внутри плоской диэлектрической пластины:

  

    +g0                                 -g0

                                         

                                       Е0

               -              +   

 



               -              +                     

                                            

                                       

               -              +  

   


g0 – свободные перемещающиеся заряды, создающие Е0 (вектор);

Число силовых линий уменьшается во столько раз, какое значение имеет e.

Е0 = g0/e0

Е = Е0 – Е’ = g0/e0 - gСВЯЗ/e0 =             = 1/e0(g0 - gСВЯЗ);

E = E0 – HE ® E*(1 +H) = E0 ®       E = E0/(1+H) = E0/e;

Д = e0eE = e0E, т.е. вектор индукции внутри не изменяется, плотность силовых линий остается постоянной.

E = 1/e0*(g0 - gСВЯЗ) = E0/e =g0/(e0e);

gCВЯЗ = g0*(e - 1)/e.















































25. Сегнетоэлектрики:

Существуют группы веществ, которые могут обладать самопроизвольной поляризованностью в отсутствие внешнего поля. Подобные вещества получили название сегнетоэлектриков.

Впервые свойства сегнетоэлектриков было изучено Курчатовым.

Отличия сегнетоэлектриков от остальных диэлектриков:

1) Диэлектрическая проницаемость сегнетоэлектриков измеряется тысячами, а у диэлектриков – десятками.

2) Диэлектрическая проницаемость сегнетоэлектриков зависит от напряженности поля.

3) Сегнетоэлектрики обладают явлением гистерезиса (запаздывания):

    

                               P




                             1    

Pr            2               3       


                                                             E

 





                      EC

При изменении поля значение поляризованности Р и смещения D отстают от напряженности поля Е, в результате чего P и D зависят не только от текущего значения Е, но и от проедшествующего. Это явление называется гистерезисом.

На участке (2), при обращении Е в ноль, сохраняется остаточная поляризованность Pr. Она становится равной нулю только под действием противоположнонаправленного поля ЕС, называемой коэрцетивной силой.

Сегнетоэлектриками могут быть только кристаллические вещества с отсутствующим центром симметрии.

У каждого сегнетоэлектрика $ темпиратура, называемая точкой Кюри, при которой он утрачивает свои свойства и становиться обычным диэлектриком.






















26. Поведение векторов напряженности и индукции на границе двух сред:

                   Et1

e1

                                   ®    

                ®               n1

                En1   a1

                                                        dh

Et2

             a2    ®          ®          

                           En2        n2   


e2


Выделим на границе сред тонкую «шайюбу» толщиной dh ® 0 и площадью S. Подсчитаем поток индукции Д через выделенный объем.

Дn2*S*cos0o + Дn1*S*cos180o + ФБОК = 0, где Ф = 0, т.к. dh ® 0;

Дn2*S - Дn1*S = 0 ® Дn2 = Дn1 ®     ® e0e2En2 = e0e1En1 ® En2/En1 = e1/e2.

Дn – неприрывна, а Еn терпит разрыв.                                                ®

Рассмотрим циркуляцию вектора Е по контуру на границе раздела с        dh ® 0:

                                          ®  

               ®                       E1t

               E1



Et2                            l   

              Et1 

E2

                                     ®      

                                     E2t

E1t l cos0o + E2t l cos180o +              + EБОК dh cos90o = 0;

Et1 = Et2; Дt1/(e0e1) = Дt2/(e0e2) ® ® Дt1/ Дt2  = e1/e2 (Е1 и Д1 сонаправленны, как и Е2 и Д2);

tga1/tga2 = (Et1/ En1)*(En2/Et2) =      = En2/En1 = e1/e2.





























27. Энергия электрического плоля:

Плотность энергии – энергия, приходящаяся на единицу объема поля.

w = W/V – в однородном поле;

w = dW/dV -  в неоднородном поле.

[w] = Дж/м3;

Определим w в поле плоского конденсатора:

W = CU2/2 = (e0eSU2)/(2d), где        U – разность потенциалов на обкладках конденсатора;

d – расстояние между обкладками;

V = S*d;

w = W/V =(e0eSU2)/(2d*Sd) =            = (e0eU2)/(2d2);

U/d = E;

w = (e0eE2)/2 = EД/2 = Д2/(2e0e)

В сегнетоэлектриках w = 1/2 S петли гистерезиса.

Очевидно, что w характеризует поле в конкретной точке, как Е и Д.

W = VòwdV – энергия поля.

Энергия взаимодействия двух точечных зарядов:

W = q1*j2 = (q1q2)/(4pe0er) – энергия взаимодействия, она делится поровну между зарядами.

Энергия одного заряда:

Wi = 1/2 qiji;

Энергия поля из N зарядов:

W = 1/2 i=1åNqiji, при этом i ³ 2.



28. Классическая теория электропроводности металлов:

Существует предположение, что электроны проводимости в металле ведут себя подобно молекулам идеального газа. В промежутках между соударениями они движуться совершенно свободно, пробегая в среднем некоторый путь l. Но в отличии от газа, электроны в металле сталкиваются приемущественно не сами с собой, а с ионами, образующими кристаллическую решетку металла.

Оценку средней скорости теплового движения электронов можно произвести по формуле:

<u> = Ö(8kT)/(pm), для комнатной темпиратуры <u> » 105 м/с.

При включении поля на хаотическое тепловое движение, происходящее с <u>, накладывается упорядоченное движение электронов с <u>:

j = ne<u>, где j – плотность тока; для меди <u> » 10-3 м/с.

Вызываемое полем изменение среднего значения кинетической энергии электронов.

<(u + u)2> = <u2 + 2uu + u2> =         = <u2> + 2<uu> + <u2> Û

Û <(u + u)2> = <u2> + <u2>, значит упорядоченное движение увеличивает кинетическую энергию  в среднем на <Dek> = (m<u2>)/2.










29. Природа носителей зарядов металла:

В результате проведения ряда опытов /трамвайная линия/ было доказано, что заря в металлах переносится не атомами, а другими частицами, предположительно электронами. Если это так, то при резком торможении частицы должны продолжить свое движение и перенести некоторый заряд.

] проводник движется со скоростью v0 и резко затормаживается с ускорением w. Продолжая двигаться по инерции, носители приобретут ускорение –w. Такое же ускорение можно создать, подействовав на проводник электрическим полем с E = -mw/e’, т.е. приложив к концам проводника разность потенциалов:

j1 - j2 = 1ò2Edl = -1ò2(mw)/e’dl =       = -mwl/e’, где l – длина проводника. В этом случае по проводнику потечет ток I = (j1 - j2)/R.

Таким образом за время торможения прошел заряд

q = òdq = -u0ò0ml/(e’R)du =                = (m/e’)*(lu0/R), заряд положителен, если он переносится в направлении движения проводника.

Существование в металлах свободных электронов можно объяснить тем, что при образовании кристаллической решетки, от атомов отщепляются слабее всего связанные электроны.



30. Закон Видемана – Франца:

Известно, что металлы обладают как высокой электропроводностью, так и большой теплопроводностью. Видеман и Франц в 1853 году установили, что отношение коэффициента теплопроводности Н к коэффициенту электропроводности s для всех металлов примерно одинаковое и изменяется пропорционально абсолютной темпиратуре. Тот факт, что теплопроводность металлов значительно превышает теплопроводность диэлектриков говорит о том, что и теплопроводность  в металлах осуществляется с помощью свободных электронов.

Рассматривая электроны как одноатомный газ получим:

H = 1/3 nmulCV, где СV = 3/2 (k/m), то H = 1/2 nkul.

Таким образом

H/s = (kmu2)/e2 = 3(k/e)2T =             = 2,23*10 ¾ 8*T.














31. Постоянный электрический ток, его плотность и ЭДС:

Если через некоторую поверхность переносится суммарный заряд, отличный от нуля, то говорят, что через эту поверхность течет электрический ток. Ток может течь в тветдых телах (металлы, полупроводники), в жидкостях (электролиты) и газах (называется газовым разрядом).

Для протекания тока необходимо наличие заряженных частиц, которые могут перемещаться в пределах всего тела, называемых носителями тока. Ими могут быть электроны, ионы или макроскопические частицы, несущие на себе избыточный заряд.

Ток возникает при условии, что внутри тела $ эл. поле. Носители заряда принимают участие в молекулярном тепловом движении и движуться с некой v и в отсутствии заряда, но т.к. движение хаотическое, то ток = 0. При появлении поля на хаотическое v накладывается упорядоченное u. Т.о. u = v + u, но т.к. <v> = 0, то <u> = <u>.

Значит эл. ток – упорядоченное движение электрических зарядов.

Эл. ток колличественно характеризует величина, равная величине заряда, переносимого через рассматриваемую поверхность за единицу времени, и называемая силой тока, т.е. поток заряда через поверхность.

I = dq/dt, где dt – время, за которое через поверхность переносится заряд dq.

Перенос “-“ заряда в одном направлении эквивалентен переносу такого же “+” заряда в противоположном направлении. Если через поверхность одновременно переносится «+» и «¾» заряды, то

I = dq+/dt + |dq¾|/dt.

За направление тока принимается направление движения «+» носителей.

Эл. ток может быть распределен по поверхности, по которой он течет неравномерно. Это показывает вектор плотности тока j. Он численно равен отношению {силы тока dI, протекающего через расположенную в данной точке перпендикулярную к направлению движения носителей площадку dS^} и {величины этой площадки}:

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.