Меню
Поиск



рефераты скачать Механика, молекулярная физика и термодинамика

Механика, молекулярная физика и термодинамика

Министерство образования Российской Федерации

Омский государственный технический университет









МЕХАНИКА, МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА


Учебное пособие















Омск 2007

УДК   531+539.19+536 (075)

ББК    22.2+22.36+22.317я73

           М55


Рецензенты:

К.Н. Полещенко, д-р техн. наук, профессор кафедры «Физическое материаловедение» ОмГУ;

С.Н. Поворознюк, канд. техн. наук, доцент.



М55 Механика, молекулярная физика и термодинамика: Учеб. пособие

/Авторы-сост.: В. П. Шабалин, О. В. Кропотин, В. О. Нижникова,

А. И. Блесман, Т.Н. Кондратьева,  О. Ю. Павловская   Омск: Изд-во ОмГТУ, 2003. 74 с.


Учебное пособие предназначено для самостоятельной работы студентов вечерней и заочной форм обучения инженерно-технических специ­альностей высших учебных заведений.

Подготовлено на кафедре физики и одобрено редакционно-издательским советом ОмГТУ.







© Авторы-составители, 2007

© Омский государственный

технический университет, 2007

ПРЕДИСЛОВИЕ


Цель настоящего учебного пособия – оказать помощь студентам заочной и вечерней форм обучения инженерно-технических специальностей высших учебных заведений в изучении курса физики по разделам:

-                   классическая механика;

-                   специальная теория относительности (релятивистская механика);

-                   молекулярная физика;

-                   термодинамика.

Это соответствует первому семестру в изучении курса физики.

В пособии приводится содержание теоретического курса по перечисленным разделам и требования к оформлению контрольных заданий, которыми следует руководствоваться при самостоятельной работе.

Основной учебный материал программы курса в пособии распределен на две главы. В каждой из них даны примеры решения физических задач, задачи для самостоятельного решения с ответами и контрольное задание по данному разделу. Задачи в контрольных заданиях подобраны так, чтобы закрепить тот учебный материал, который излагается в данной главе.

Рекомендации при работе с пособием.

1. Выбрать какой-либо учебник по курсу физики из тех, что приводятся в библиографическом списке. В данном пособии учебный материал излагается в сжатой форме, поэтому необходимо использование дополнительной литературы. Это позволит усвоить доказательства основных законов физики и примеры их использования при решении задач.

2. Чтение учебного пособия следует сопровождать составлением конспекта, в котором записываются формулировки законов и формулы, выражающие законы, определения физических величин и единицы их измерения, делаются рисунки и выполняется решение типовых задач.

3. Самостоятельную работу по изучению физики студент должен подвергать систематическому самоконтролю. С этой целью после изучения очередной главы следует ставить вопросы, касающиеся формулировок законов, определений физических величин, и отвечать на эти вопросы. При этом надо использовать рабочую программу (содержание теоретического курса). Студент не должен ограничиваться только запоминанием физических формул. От него требуется умение самостоятельно делать выводы формул и проводить доказательства физических законов.

4. Чтобы подготовиться к выполнению контрольной работы, следует после изучения очередной главы внимательно разобрать помещенные в пособии примеры решения типовых задач, решить задачи, предназначенные для самостоятельного решения.


СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОГО КУРСА

 

Введение


Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния. Многообразие и значение практических применений физики.

                                                 

Механика


1.   О с н о в н ы е   з а к о н ы   д в и ж е н и я. Механическое движение. Системы отсчета и системы координат. Понятие материальной точки. Движение материальной точки. Перемещение и путь, скорость, ускорение, тангенциальная и нормальная составляющие ускорения. Движение материальной точки по окружности. Связь между векторами линейных и угловых скоростей и ускорений.

Инерция, масса, импульс (количество движения), сила. Законы Ньютона, их физическое содержание и взаимная связь. Понятие об инерциальных системах отсчета. Сложение скоростей в классической механике. Механический принцип относительности. Преобразование координат Галилея. Границы применимости классической механики.

2.   З а к о н ы   с о х р а н е н и я. Закон сохранения импульса. Работа и мощность. Работа переменной силы. Кинетическая и потенциальная энергии. Закон сохранения энергии в механике. Консервативные и диссипативные системы. Применение законов сохранения импульса и энергии к упругому и неупругому ударам.

3.   Т в е р д о е   т е л о   к а к   с и с т е м а   ч а с т и ц. Понятие абсолютно твердого тела. Поступательное и вращательное движения твердого тела. Применимость законов кинематики и динамики материальной точки к поступательному движению твердого тела. Угловое перемещение, угловая скорость, угловое ускорение - кинематические характеристики вращательного движения твердого тела. Центр инерции (массы) твердого тела. Вращение твердого тела вокруг неподвижной оси, его момент инерции и кинетическая энергия. Основной закон динамики вращательного движения. Закон сохранения момента импульса для системы тел. Работа и мощность при вращательном движении.

4.   С и л ы   у п р у г о с т и   и   т р е н и я. Упругое тело. Закон Гука для основных видов деформаций. Потенциальная энергия упругодеформированного тела. Сила трения.

5. С и л ы   т я г о т е н и я. Понятие о поле тяготения. Закон всемирного тяготения. Центральные силы. Понятие о напряженности и потенциале гравитационного поля.

6.  Э л е м е н т ы   т е о р и и   о т н о с и т е л ь н о с т и. Постулаты теории относительности. Преобразования Лоренца. Релятивистское изменение длин и промежутков времени. Релятивистский закон сложения скоростей. Понятие о релятивистской механике. Закон изменения массы со скоростью. Взаимосвязь массы и энергии.


Молекулярная физика и термодинамика

1. Ф и з и ч е с к и е  о с н о в ы  м о л е к у л я р н о – к и н е т и ч е с к о й  т е о р и и.  Понятие о реальном и идеальном газах. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Смеси газов.

Основное уравнение молекулярно-кинетической теории идеального газа. Средняя энергия молекул, молекулярно-кинетическое толкование температуры. Постоянная Больцмана. Степени свободы молекул. Распределение энергии по степеням свободы. Внутренняя энергия идеального газа.

Понятие о функции распределения. Максвелловское распределение молекул по скоростям. Опыт Штерна. Больцмановское распределение частиц в потенциальном поле. Эффективный радиус молекулы. Число столкновений и средняя длина свободного пробега молекул.


Физические основы термодинамики


1.   П е р в о е   н а ч а л о   т е р м о д и н а м и к и. Внутренняя энергия системы как функция состояния. Количество теплоты. Эквивалентность теплоты и работы. Первое начало термодинамики и его применение к изотермическому, изобарическому и изохорическому процессам. Уравнения и графики этих процессов. Изменение внутренней энергии, работа и количество теплоты, переданное в этих процессах. Молярная и удельная теплоемкости идеальных газов при постоянном объеме и постоянном давлении. Адиабатический процесс. Уравнение Пуассона.

     2.   В т о р о е   н а ч а л о   т е р м о д и н а м и к и. Энтропия. Круговые, обратимые и необратимые процессы. Принцип действия тепловой и холодильной машин. Идеальная тепловая машина Карно и ее КПД. Абсолютная шкала температур.


Реальные газы


Реальные газы. Уравнение Ван дер Ваальса и его анализ. Критическое состояние. Взаимодействие молекул. Силы притяжения и отталкивания. Внутренняя энергия реального газа.

Требования к оформлению контрольных заданий

и разъяснения по использованию таблиц


Контрольные задания решаются в соответствии с номером варианта. В конце пособия приведены таблицы, где указаны номера задач по соответствующей теме для каждого варианта. Всего по каждой из тем необходимо решить 8 задач.

Контрольные задания оформляются в обычной тетради (в клетку) или в сброшюрованных листах форматом А4. На титульном листе указываются:

- Ф И О  студента, номер группы и факультет;

- название контрольного задания и номер варианта.


Порядок оформления решения задач

1. После слова "дано" выписать все величины с их числовыми значениями, которые будут использованы в процессе решения задачи. Числовые значения, исключая те случаи, когда определяются безразмерные отношения, тут же переводить в систему СИ, проставляя рядом соответствующее наименование. После слова "найти"  выписать все искомые величины (или отношения величин) со знаком вопроса.

2. Указать те основные законы и формулы, на которых базируется решение данной задачи, и привести их словесную формулировку. Разъяснить смысл буквенных обозначений, входящих в исходную формулу. Если такая формула является частным случаем фундаментального закона, то ее необходимо вывести из этого закона, используя граничные условия.

3. Сделать чертеж или график, поясняющий содержание задачи (в тех случаях, когда это возможно). Выполнить его надо аккуратно, желательно размером на полстраницы, при помощи карандаша, циркуля, линейки, лекал. На чертеже или графике должны быть нанесены обозначения всех буквенных величин, которые используются в расчетных формулах и могут быть пояснены чертежом.

4. Каждый этап решения задачи сопровождать краткими, но исчерпывающими пояснениями.

5. Физические задачи весьма разнообразны и дать единый рецепт их решения невозможно. Однако, как правило, физические задачи следует решать в общем виде, т.е. выразить искомую величину в буквенных обозначениях величин, заданных в условиях задачи и взятых из таблицы. При этом способе не производятся вычисления промежуточных величин; числовые значения подставляются только в окончательную (рабочую) формулу, выражающую искомую величину. Рабочая формула должна быть записана в рационализированной форме, все величины, входящие в нее, выражены в единицах СИ.

6. Подставить в рабочую формулу наименование единиц ( в которых выражены заданные числовые значения ) и путем упрощающих действий с ними убедиться в правильности наименования искомой величины.

7. Подставить в рабочую формулу числовые значения, выраженные в единицах одной системы (рекомендуется - в СИ). Несоблюдение этого правила приводит к неверному результату. Исключение из этого правила допускается лишь для тех однородных величин, которые входят в виде сомножителей в числитель и знаменатель формулы с одинаковыми показателями степени. Такие величины можно выразить в любых единицах, но обязательно в одинаковых.

8. Произвести расчеты с величинами, подставленными в рабочую формулу, записать в ответе числовое значение и сокращенное наименование единиц измерения искомой величины.

9. При подстановке в рабочую формулу, а также при выражении ответа числовые значения величин записывать как произведение десятичной дроби с одной значащей цифрой перед запятой на десять в соответствующей степени. Например, вместо 3520 надо записать 3,52´103 , вместо 0,00129 записать 1,29´10-3 и т.д. Рекомендуемая запись числовых значений облегчает расчетные действия с ними, является более компактной и наглядной.

10. Оценить правдоподобность числового ответа. В ряде случаев такая оценка помогает своевременно обнаружить ошибочность полученного результата и устранить ее. Например, коэффициент полезного действия тепловой машины не может быть больше единицы, скорость тела не может превзойти скорость света в вакууме (с= 3´108 м/с) и т.д.


I. МЕХАНИКА И ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ


1. Кинематика поступательного и вращательного движения материальной точки


Механика занимается изучением механического движения тел. Механическим движением тел называют изменение их положения (или положения их частей) в пространстве с течением времени. В основе классической механики лежат законы Ньютона.

Кинематика изучает механическое движение с геометрической точки зрения и не рассматривает причины, вызывающие это движение. В механике рассматривается движение таких объектов, как материальная точка и абсолютно твердое тело.

Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь.

Абсолютно твёрдым телом называется тело, деформацией которого в данных условиях можно пренебречь. Абсолютно твёрдое тело можно рассматривать как систему материальных точек, жестко связанных между собой.


1.1. Кинематические характеристики движения материальной точки


Описать движение материальной точки, значит знать ее положение относительно выбранной системы отсчета в любой момент времени. Системой отсчёта называется система координат, связанная с телом отсчёта и снабжённая синхронизированными часами. Наиболее часто используется прямоугольная декартова система координат (рис. 1).


Рис. 1

 

Положение материальной точки характеризуется радиусом-вектором , проведённым из начала координат в данную точку (рис. 1). Проекции радиуса-вектора на координатные оси соответствуют координатам точки в выбранной системе координат (рис. 1):


.           


Движение материальной точки задано, если известна зависимость координат точки от времени, т.е.

                                             или    .

Данные уравнения являются кинематическими уравнениями движения материальной точки, или законом движения точки. В процессе движения конец радиуса-вектора, связанный с точкой, описывает в пространстве кривую, называемую траекторией движения материальной точки. В зависимости от формы траектории различают прямолинейное и криволинейное движения.

Перемещением материальной точки назы­ва­ют вектор, проведённый из начальной точки в конечную точку траектории (рис. 1).

.

Вектор     может быть выражен через пере­ме­ще­ния вдоль координатных осей:

.

Модуль вектора перемещения можно определить следующим образом:    

.

  Путь материальной точки S12 - это длина траектории.

Скорость - векторная физическая величина, характеризующая быстроту изменения положения тела в пространстве, равная перемещению тела за единицу времени.

Различают среднюю и мгновенную скорости.

 -  средняя скорость;


  - мгновенная скорость;


  - среднее значение модуля скорости.

Вектор средней скорости направлен так же, как и вектор перемещения . Вектор мгновенной скорости направлен по касательной к траектории движения так же, как вектор элементарного перемещения: . Так как , где dS - элементарный путь, то модуль мгновенной скорости равен производной пути по времени:

.

В декартовой системе координат скорость можно представить через её проекции на оси:


Модуль скорости может быть найден по следующей формуле:

.


При рассмотрении движения тела относительно двух различных инерциальных систем отсчета используют классический закон сложения скоростей: скорость тела относительно неподвижной системы отсчета  равна векторной сумме скорости тела относительно движущейся системы  и скорости самой движущейся системы относительно неподвижной :

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.