|
Проведем исследование с помощью метода наименьших квадратов в программе MathCAD. 1. ПФ Кобба – Дугласа. 2. Линейная ПФ.
Следовательно, вычисление отклонения дает нам следующие результаты: линейная производственная функция F(K,L)=-9652+1,223K+28,676L лучше идентифицирует производственный процесс выпуска рыбной продукции за указанный период. 2.3. Построение статистической модели Леонтьева Эффективное ведение народного хозяйства предполагает наличие баланса между отдельными отраслями. Каждая отрасль при этом выступает двояко: с одной стороны, как производитель некоторой продукции, а с другой — как потребитель продуктов, вырабатываемых другими отраслями. Предположим, что вся производящая сфера народного хозяйства разбита на некоторое число n отраслей, каждая из которых производит свой однородный продукт, причем разные отрасли производят разные продукты. Разумеется, такое представление об отрасли является в значительной мере абстракцией, так как в реальной экономике отрасль определяется не только названием выпускаемого продукта, но и ведомственной принадлежностью своих предприятий (например, данному министерству, тресту и т. п.). Однако представление об отрасли в указанном выше смысле (как "чистой" отрасли) все же полезно, так как оно позволяет провести анализ сложившейся технологической структуры народного хозяйства, изучить функционирование народного хозяйства "в первом приближении". Итак, предполагаем, что имеется n различных отраслей; О1, …,Оn, каждая из которых производит свой продукт. В дальнейшем отрасль Оi будем коротко называть "i-я отрасль". В процессе производства своего продукта каждая отрасль нуждается в продукции других отраслей (производственное потребление). Будем вести речь о некотором определенном промежутке времени [Т0, Т1] (обычно таким промежутком служит плановый год) и введем следующие обозначения: xi — общий объем продукции отрасли i за данный промежуток времени — так называемый валовой выпуск отрасли г; xij — объем продукции отрасли i, расходуемый отраслью j в процессе производства; yi — объем продукции отрасли i, предназначенный к потреблению в непроизводственной сфере, — объем конечного потребления. Этот объем составляет обычно более 75% всей произведенной продукции. В него входят создаваемые в хозяйстве запасы, личное потребление, обеспечение общественных потребностей (просвещение, наука, здравоохранение и т. д.), поставки на экспорт. Указанные величины можно свести в таблицу. Обратим наше внимание на элементы (xij ). Отрасль представлена двояким образом. Как элемент строки она выступает в роли поставщика производимой ею продукции, а как элемент столбца — в роли потребителя продукции других отраслей экономической системы. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Производственное потребление |
Конечное потребление |
Валовой выпуск |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
x11 x12 x13….. x1n |
y1 |
x1 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
x11 x12 x13….. x1n |
y2 |
x2 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
x11 x12 x13….. x1n |
yn |
x3 |
Балансовый характер этой таблицы выражается в том, что при любом i =1,...,п должно выполняться соотношение:
хi= xi1 + xi2 + xi3 + xin + уi , (4.1)
означающее, что валовой выпуск хi расходуется на производственное потребление, равное xi1 + xi2 + xi3 + xin и непроизводственное потребление, равное уi Будем называть (4.1) соотношениями баланса. Таким образом, таблица отражает баланс между производством и потреблением.
Единицы измерения всех указанных величин могут быть или натуральными (кубометры, тонны, штуки...), или стоимостными.
Леонтьев, рассматривая развитие экономики, обратил внимание на важное обстоятельство. Величины остаются постоянными в течение ряда лет. Это обусловливается примерным постоянством используемой технологии.
Таким образом, сделаем такое допущение: для выпуска любого объема хj продукции j необходимо затратить продукцию отрасли i в количестве , где — постоянный коэффициент. Проще говоря, материальные издержки пропорциональны объему производимой продукции. Это допущение постулирует линейность существующей технологии. Принцип линейности распространяется и на другие виды издержек, например, на оплату труда, а также на нормативную прибыль.
Итак, согласно гипотезе линейности имеем:
(4.2)
Коэффициенты ац называют коэффициентами прямых затрат (коэффициенты материалоемкости).
В предположении линейности соотношения (4.1) принимают вид:
х1= а11х1 + а12х2 + ... + а1пхп + у1 ,
х1= а21х1 + а22х2 + ... + а2пхп + у2 ,
………
хn= аn1х1 + аn2х2 + ... + аnпхп + уn .
или в матричной записи:
,
где (4.3)
Вектор называется вектором валового выпуска, вектор у называется вектором конечного потребления, а матрица А — матрицей прямых затрат. Соотношение (4.3) называется уравнением линейного межотраслевого баланса. Вместе с изложенной интерпретацией матрицы А и векторов и это соотношение называют также моделью Леонтьева.
Уравнения межотраслевого баланса можно использовать для целей планирования. В этом случае задача ставится так: для предстоящего планового периода [Т0, Т1] задается вектор конечного потребления. Требуется определить вектор валового выпуска. Проще говоря, нужно решить задачу: сколько следует произвести продукции различных видов, чтобы обеспечить заданный уровень конечного потребления? В этом случае необходимо решить систему линейных уравнений (4.3) с неизвестным вектором при заданной матрице А и векторе . При этом нужно иметь в виду следующие особенности системы (4.3):
1) Все компоненты матрицы А и вектора неотрицательны (это вытекает из экономического смысла А и вектора у и записывается так: А 0, 0.
2) Все компоненты вектора также должны быть неотрицательными: 0.
Замечание: Обратим внимание на смысл коэффициентов а у прямых затрат в случае стоимостного (а не натурального) баланса. В этом случае из (4.2) видно, что аij совпадает со значением xij при xi =1(1 руб. ). Таким образом, аij есть стоимость продукции отрасли i, вложенной в 1 руб. продукции j. Отсюда видно, что стоимостный подход по сравнению с натуральным обладает более широкими возможностями.
В стоимостном выражении первоначальная таблица выглядит следующим образом.
Производство продукции, B
Потребление продукции
Конечная продукция Y
Валовой выпуск
Рыбная
Логистика
Судоремонтная
Пищевая
Машино и приборо-строение
Рыбная
452,64
6789,6
33042,72
4526,4
452,64
56700
101964
Логистика
5915,76
29578,8
14789,4
44368,2
53241,84
56430
204324
Судоремонтная
35239,8
1174,66
70479,6
5873,3
4698,64
390860
508326
Пищевая
250932
5018,64
50186,4
150559,2
45167,76
787890
1289754
Машино и приборо-строение
82186,6
82186,6
41093,3
82186,6
123279,9
323630
734563
Преобразуем таблицу, найдя коэффициенты a - коэффициенты прямых затрат
Производство продукции, B
Потребление продукции
Конечная продукция Y
Валовой выпуск
Рыбная
С\х
Судоремонтная
Пищевая
Машино и приборо-строение
Рыбная
0,01
0,15
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9
Новости |
Мои настройки |
|
© 2009 Все права защищены.