|сечения.                     |  |                              | 
|[pic]                               | |Проводим прямую АВ. От точки А| 
|Рис. 6. Построение золотого         | |откладываем на ней три раза   | 
|треугольника                        | |отрезок О произвольной        | 
|                                    | |величины, через полученную    | 
|                                    | |точку Р проводим перпендикуляр| 
|                                    | |к линии АВ, на перпендикуляре | 
|                                    | |вправо и влево от точки Р     | 
|                                    | |откладываем отрезки О.        | 
|                                    | |Полученные точки d и d1       | 
|                                    | |соединяем прямыми с точкой А. | 
|                                    | |Отрезок dd1 откладываем на    | 
|                                    | |линию Ad1, получая точку С.   | 
|                                    | |Она разделила линию Ad1 в     | 
|                                    | |пропорции золотого сечения.   | 
|                                    | |Линиями Ad1 и dd1 пользуются  | 
|                                    | |для построения «золотого»     | 
|                                    | |прямоугольника.               | 
|                                    | |                      | 
|5. История золотого сечения                                         | 
|                                                                    | 
|Принято считать, что понятие о золотом делении ввел в научный обиход| 
|Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть  | 
|предположение, что Пифагор свое знание золотого деления             | 
|позаимствовал у египтян и вавилонян. И действительно, пропорции     | 
|пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из  | 
|гробницы Тутанхамона свидетельствуют, что египетские мастера        | 
|пользовались соотношениями золотого деления при их создании.        | 
|Французский архитектор Ле Корбюзье нашел, что в рельефе из храма    | 
|фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, | 
|пропорции фигур соответствуют величинам золотого деления. Зодчий    | 
|Хесира, изображенный на рельефе деревянной доски из гробницы его    | 
|имени, держит в руках измерительные инструменты, в которых          | 
|зафиксированы пропорции золотого деления.                           | 
|Греки были искусными геометрами. Даже арифметике обучали своих детей| 
|при помощи геометрических фигур. Квадрат Пифагора и диагональ этого | 
|квадрата были основанием для построения динамических                | 
|прямоугольников.                                                    | 
|[pic]                                                               | 
|Рис. 7. Динамические прямоугольники                                 | 
|Платон (427...347 гг. до н.э.) также знал о золотом делении. Его    | 
|диалог «Тимей» посвящен математическим и эстетическим воззрениям    | 
|школы Пифагора и, в частности, вопросам золотого деления.           | 
|В фасаде древнегреческого храма Парфенона присутствуют золотые      | 
|пропорции. При его раскопках обнаружены циркули, которыми           | 
|пользовались архитекторы и скульпторы античного мира. В Помпейском  | 
|циркуле (музей в Неаполе) также заложены пропорции золотого деления.| 
|                                                                    | 
|[pic]                                                               | 
|Рис. 8. Античный циркуль золотого сечения                           | 
|В дошедшей до нас античной литературе золотое деление впервые       | 
|упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается        | 
|геометрическое построение золотого деления После Евклида            | 
|исследованием золотого деления занимались Гипсикл (II в. до н.э.),  | 
|Папп (III в. н.э.) и др. В средневековой Европе с золотым делением  | 
|познакомились по арабским переводам «Начал» Евклида. Переводчик     | 
|Дж. Кампано из Наварры (III в.) сделал к переводу комментарии.      | 
|Секреты золотого деления ревностно оберегались, хранились в строгой | 
|тайне. Они были известны только посвященным.                        | 
|В эпоху Возрождения усиливается интерес к золотому делению среди    | 
|ученых и художников в связи с его применением как в геометрии, так и| 
|в искусстве, особенно в архитектуре Леонардо да Винчи, художник и   | 
|ученый, видел, что у итальянских художников эмпирический опыт       | 
|большой, а знаний мало. Он задумал и начал писать книгу по          | 
|геометрии, но в это время появилась книга монаха Луки Пачоли, и     | 
|Леонардо оставил свою затею. По мнению современников и историков    | 
|науки, Лука Пачоли был настоящим светилом, величайшим математиком   | 
|Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником| 
|художника Пьеро делла Франчески, написавшего две книги, одна из     | 
|которых называлась «О перспективе в живописи». Его считают творцом  | 
|начертательной геометрии.                                           | 
|Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г| 
|по приглашению герцога Моро он приезжает в Милан, где читает лекции | 
|по математике. В Милане при дворе Моро в то время работал и Леонардо| 
|да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли         | 
|«Божественная пропорция» с блестяще выполненными иллюстрациями,     | 
|ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была    | 
|восторженным гимном золотой пропорции. Среди многих достоинств      | 
|золотой пропорции монах Лука Пачоли не преминул назвать и ее        | 
|«божественную суть» как выражение божественного триединства бог сын,| 
|бог отец и бог дух святой (подразумевалось, что малый отрезок есть  | 
|олицетворение бога сына, больший отрезок – бога отца, а весь отрезок| 
|– бога духа святого).                                               | 
|Леонардо да Винчи также много внимания уделял изучению золотого     | 
|деления. Он производил сечения стереометрического тела,             | 
|образованного правильными пятиугольниками, и каждый раз получал     | 
|прямоугольники с отношениями сторон в золотом делении. Поэтому он   | 
|дал этому делению название золотое сечение. Так оно и держится до   | 
|сих пор как самое популярное.                                       | 
|В то же время на севере Европы, в Германии, над теми же проблемами  | 
|трудился Альбрехт Дюрер. Он делает наброски введения к первому      | 
|варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот,| 
|кто что-либо умеет, обучил этому других, которые в этом нуждаются.  | 
|Это я и вознамерился сделать».                                      | 
|Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во     | 
|время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает    | 
|теорию пропорций человеческого тела. Важное место в своей системе   | 
|соотношений Дюрер отводил золотому сечению. Рост человека делится в | 
|золотых пропорциях линией пояса, а также линией, проведенной через  | 
|кончики средних пальцев опущенных рук, нижняя часть лица – ртом и   | 
|т.д. Известен пропорциональный циркуль Дюрера.                      | 
|Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из| 
|сокровищ геометрии. Он первый обращает внимание на значение золотой | 
|пропорции для ботаники (рост растений и их строение).               | 
|Кеплер называл золотую пропорцию продолжающей саму себя «Устроена   | 
|она так, – писал он, – что два младших члена этой нескончаемой      | 
|пропорции в сумме дают третий член, а любые два последних члена,    | 
|если их сложить, дают следующий член, причем та же пропорция        | 
|сохраняется до бесконечности».                                      | 
|Построение ряда отрезков золотой пропорции можно производить как в  | 
|сторону увеличения (возрастающий ряд), так и в сторону уменьшения   | 
|(нисходящий ряд).                                                   | 
|Если на прямой произвольной длины, отложить отрезок m, рядом        | 
|откладываем отрезок M. На основании этих двух отрезков выстраиваем  | 
|шкалу отрезков золотой пропорции восходящего и нисходящего          | 
|рядов:                                                      | 
|                                                                              | 
|[pic]                                                                                | 
|Рис. 9. Построение шкалы отрезков золотой пропорции                                  | 
|                                                                             | 
|В последующие века правило золотой пропорции превратилось в       | 
|академический канон и, когда со временем в искусстве началась     | 
|борьба с академической рутиной, в пылу борьбы «вместе с водой     | 
|выплеснули и ребенка». Вновь «открыто» золотое сечение было в     | 
|середине XIX в. В 1855 г. немецкий исследователь золотого сечения | 
|профессор Цейзинг опубликовал свой труд «Эстетические             | 
|исследования». С Цейзингом произошло именно то, что и должно было | 
|неминуемо произойти с исследователем, который рассматривает       | 
|явление как таковое, без связи с другими явлениями. Он            | 
|абсолютизировал пропорцию золотого сечения, объявив ее            | 
|универсальной для всех явлений природы и искусства. У Цейзинга    | 
|были многочисленные последователи, но были и противники, которые  | 
|объявили его учение о пропорциях «математической эстетикой».      | 
|[pic]                                                             | 
|Рис. 10. Золотые пропорции в частях тела человека                 | 
|                                                          | 
|                       |  |Цейзинг проделал колоссальную  | 
|[pic]                         |  |работу. Он измерил около двух  | 
|Рис. 11. Золотые пропорции в  |  |тысяч человеческих тел и пришел| 
|фигуре человека               |  |к выводу, что золотое сечение  | 
|                              |  |выражает средний статистический| 
|                              |  |закон. Деление тела точкой пупа| 
|                              |  |– важнейший показатель золотого| 
|                              |  |сечения. Пропорции мужского    | 
|                              |  |тела колеблются в пределах     | 
|                              |  |среднего отношения 13 : 8 =    | 
|                              |  |1,625 и несколько ближе        | 
|                              |  |подходят к золотому сечению,   | 
|                              |  |чем пропорции женского тела, в | 
|                              |  |отношении которого среднее     | 
|                              |  |значение пропорции выражается в| 
|                              |  |соотношении 8 : 5 = 1,6. У     | 
|                              |  |новорожденного пропорция       | 
|                              |  |составляет отношение 1 : 1, к  | 
|                              |  |13 годам она равна 1,6, а к 21 | 
|                              |  |году равняется мужской.        | 
|                              |  |Пропорции золотого сечения     | 
|                              |  |проявляются и в отношении      | 
|                              |  |других частей тела – длина     | 
|                              |  |плеча, предплечья и кисти,     | 
|                              |  |кисти и пальцев и т.д.         | 
|                              |  |                               | 
|                              |  |                       | 
|Справедливость     | | | | | | | |  |  |  |  |  |    |        | 
|своей теории       | | | | | | | |  |  |  |  |  |    |        | 
|Цейзинг проверял на| | | | | | | |  |  |  |  |  |    |        | 
|греческих статуях. | | | | | | | |  |  |  |  |  |    |        | 
|Наиболее подробно  | | | | | | | |  |  |  |  |  |    |        | 
|он разработал      | | | | | | | |  |  |  |  |  |    |        | 
|пропорции Аполлона | | | | | | | |  |  |  |  |  |    |        | 
|Бельведерского.    | | | | | | | |  |  |  |  |  |    |        | 
|Подверглись        | | | | | | | |  |  |  |  |  |    |        | 
|исследованию       | | | | | | | |  |  |  |  |  |    |        | 
|греческие вазы,    | | | | | | | |  |  |  |  |  |    |        | 
|архитектурные      | | | | | | | |  |  |  |  |  |    |        | 
|сооружения         | | | | | | | |  |  |  |  |  |    |        | 
|различных эпох,    | | | | | | | |  |  |  |  |  |    |        | 
|растения, животные,| | | | | | | |  |  |  |  |  |    |        | 
|птичьи яйца,       | | | | | | | |  |  |  |  |  |    |        | 
|музыкальные тона,  | | | | | | | |  |  |  |  |  |    |        | 
|стихотворные       | | | | | | | |  |  |  |  |  |    |        | 
|размеры. Цейзинг   | | | | | | | |  |  |  |  |  |    |        | 
|дал определение    | | | | | | | |  |  |  |  |  |    |        | 
|золотому сечению,  | | | | | | | |  |  |  |  |  |    |        | 
|показал, как оно   | | | | | | | |  |  |  |  |  |    |        | 
|выражается в       | | | | | | | |  |  |  |  |  |    |        | 
|отрезках прямой и в| | | | | | | |  |  |  |  |  |    |        | 
|цифрах. Когда      | | | | | | | |  |  |  |  |  |    |        | 
|цифры, выражающие  | | | | | | | |  |  |  |  |  |    |        | 
|длины отрезков,    | | | | | | | |  |  |  |  |  |    |        | 
|были получены,     | | | | | | | |  |  |  |  |  |    |        | 
|Цейзинг увидел, что| | | | | | | |  |  |  |  |  |    |        | 
|они составляют ряд | | | | | | | |  |  |  |  |  |    |        | 
|Фибоначчи, который | | | | | | | |  |  |  |  |  |    |        | 
|можно продолжать до| | | | | | | |  |  |  |  |  |    |        | 
|бесконечности в    | | | | | | | |  |  |  |  |  |    |        | 
|одну и в другую    | | | | | | | |  |  |  |  |  |    |        | 
|сторону. Следующая | | | | | | | |  |  |  |  |  |    |        | 
|его книга имела    | | | | | | | |  |  |  |  |  |    |        | 
|название «Золотое  | | | | | | | |  |  |  |  |  |    |        | 
|деление как        | | | | | | | |  |  |  |  |  |    |        | 
|основной           | | | | | | | |  |  |  |  |  |    |        | 
|морфологический    | | | | | | | |  |  |  |  |  |    |        | 
|закон в природе и  | | | | | | | |  |  |  |  |  |    |        | 
|искусстве». В 1876 | | | | | | | |  |  |  |  |  |    |        | 
|г. в России была   | | | | | | | |  |  |  |  |  |    |        | 
|издана небольшая   | | | | | | | |  |  |  |  |  |    |        | 
|книжка, почти      | | | | | | | |  |  |  |  |  |    |        | 
|брошюра, с         | | | | | | | |  |  |  |  |  |    |        | 
|изложением этого   | | | | | | | |  |  |  |  |  |    |        | 
|труда Цейзинга.    | | | | | | | |  |  |  |  |  |    |        | 
|Автор укрылся под  | | | | | | | |  |  |  |  |  |    |        | 
|инициалами Ю.Ф.В. В| | | | | | | |  |  |  |  |  |    |        | 
|этом издании не    | | | | | | | |  |  |  |  |  |    |        | 
|упомянуто ни одно  | | | | | | | |  |  |  |  |  |    |        | 
|произведение       | | | | | | | |  |  |  |  |  |    |        | 
|живописи.          | | | | | | | |  |  |  |  |  |    |        | 
|В конце XIX –      | | | | | | | |  |  |  |  |  |    |        | 
|начале XX вв.      | | | | | | | |  |  |  |  |  |    |        | 
|появилось немало   | | | | | | | |  |  |  |  |  |    |        | 
|чисто              | | | | | | | |  |  |  |  |  |    |        | 
Страницы: 1, 2, 3, 4, 5, 6, 7, 8 
   
 |