Меню
Поиск



рефераты скачать Электричество и магнетизм

Замкнутая проводящая оболочка разделяет все пространство на внутреннюю и внешнюю части, в электрическом отношении совершенно не зависящие друг от друга. Это надо понимать так: после любого перемещения зарядов внутри оболочки никаких изменений поля во внешнем пространстве не произойдет, а значит,  распределение зарядов на внешней поверхности оболочки останется прежним. То же относится и к полю внутри полости (если там есть заряды) и к распределению индуцированных на стенках полости зарядов – они также останутся неизменными в результате перемещения зарядов вне оболочки. Это справедливо в рамках электростатики.

Электростатический вольтметр

Принцип действия вольтметра основан на электростатическом взаимодействии заряженных проводников. Измерительный механизм прибора состоит из неподвижного электрода 1 (рис 2), представляющего собой металлическую камеру, и подвижного алюминиевого электрода 2 в форме пластинки. Камера укреплена на изоляционной колонке 3 из вещества, обладающего большим сопротивлением на высоких частотах (керамики стеатита). Пластинка 2 закреплена на оси 4, которая установлена вертикально с помощью двух нитей 5 из бронзы (растяжки). Пружины 6, укрепленные на стойке 7,  растягивают эти нити. Измеряемое напряжение подводится одним полюсом к камере, а другим – к пластинке. Камера и пластинка заряжаются

противоположными по знаку зарядами, и возникающая сила притяжения втягивает подвижную пластинку внутрь неподвижной камеры. Противодействующий момент создается упругими силами растяжек.

Для быстрого успокоения подвижной пластинки конец ее помещается в поле постоянного магнита 8. Торможение возникает благодаря силам, действующим со стороны магнитного поля магнита на ток,  индуцируемый в той части пластинки, которая движется между полюсами магнита.

Так как обычно в таких электрических приборах моменты, действующие на подвижную часть малы, то для отсчета показаний прибора пользуются световым лучом, отраженным от небольшого легкого зеркала 9, укрепленного на оси 4.

Для уменьшения влияния внешних электрических полей прибор снабжен экраном, который заземляется. Теория электростатического вольтметра дает следующее выражение для угла отклонения α подвижной части:

,

где U- напряжение, подаваемое на вольтметр, С- емкость между электродами, k – коэффициент, зависящий от упругих свойств пружин. Из формулы видно, что угол α зависит как от квадрата напряжения U, так и от изменения емкости С. Подбором размеров и формы электродов удается сделать величину dC/dα  постоянной. Поэтому, обычно шкала электростатических вольтметров имеет квадратичный характер.

Квадратичная зависимость угла отклонения от напряжения позволяет применять такие приборы для измерения не только напряжения постоянного, но и переменного тока до частоты порядка 30 МГц.

Эти приборы имеют малую входную емкость и высокое сопротивление изоляции; поэтому измерение постоянного напряжения происходит практически без потребления мощности самим прибором и с очень малым потреблением мощности при измерении переменного напряжения. Электростатические вольтметры пригодны для измерений высоких напряжений постоянного и переменного тока, причем при измерении высокого напряжения переменного тока не требуется применение специальных измерительных трансформаторов.

Внешний вид электростатического вольтметра приведен на рис  3. Шкала   с горизонтальной прорезью  для светового указателя расположена наклонно на передней панели прибора. Для установки светового указателя на нулевое положение имеется корректор, головка которого выведена на боковую сторону. На передней стенке прибора помещены  штепсельная колодка  для подключения питания осветителя и переключатель  этого питания. Зажимы для включения вольтметра в схему расположены на задней панели.

Экспериментальная установка


Схема экспериментальной установки для измерения величины индуцированного заряда приведена на рис. 4

1 – источник питания с высоким входным сопротивлением; 2 – пластины конденсатора; 3 – измерительные пластины;  4 –изолирующие ручки; 5 – электростатический вольтметр;  6 – входные клеммы вольтметра.

Указания и рекомендации

1.                 Используемые в работе пластины укреплены на изолирующих ручках. Ручки должны быть чистыми, так как при загрязнениях изолирующие свойства  ручек неконтролируемым образом ухудшаются, что искажает экспериментальные результаты.

2.                 Для удаления случайным образом образовавшегося заряда на пластинах и ручках, перед проведением эксперимента, их следует протереть заземленным проводящим материалом.

3.                 Присоединяемые к клеммам вольтметра пластины имеют собственную и взаимную емкость, зависящую от расположения пластин при прикосновении к клеммам вольтметра. Учитывайте это обстоятельство при проведении эксперимента.

4.                 Для уменьшения электростатических наводок следует поместить вольтметр в экранирующую металлическую коробку.


Проведение эксперимента:


1.                 Собрать схему по рис. 1.

2.                 Включить источник питания с высоким выходным напряжением.

3.                 Соединив измерительные пластины 3 вместе, внести их во внешнее электрическое поле, создаваемое между пластинами конденсатора 2.

4.                 Раздвинуть измерительные пластины и удалить их из поля конденсатора, не изменяя расстояние между ними.

5.                 Присоединить их к входным клеммам 6 электростатического вольтметра 5. Записать показания вольтметра U1.

6.                 Повторить пункты 3-5 с дополнительной известной емкостью Ск. Записать показания вольтметра U2.

7.                 Зная  U1  и U2,  из уравнений 3 и 4 определить СВ+СП  и Q.

8.                 Повторить пункты 2-7 для 7-8  различных напряжений Определить площадь измерительных пластин

9.                 Вычислить поверхностные плотности зарядов σ и напряженности Е по формулам 1 и 2 для всех измеренных значений напряжений.

10.            Построить график зависимость поверхностной плотности заряда σ, индуцированного на пластине, от напряженности поля в конденсаторе.

 

Контрольные вопросы

 

1.                 Проводники во внешнем электрическом поле.

2.                 Электростатическая индукция.

3.                 Электростатическая защита. Ее физический смысл.

4.                 Электростатический вольтметр. Принцип его действия.

5.                 Идея и методика проведения  эксперимента.

6.                 Оценка погрешности эксперимента..

 

Литература, рекомендуемая к лабораторной работе:

4.                 Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.

5.                 Калашников С.Г. Электричество. – М.: Наука, 1977.

6.                 Савельев И.В. Курс общей физики. Т.2, Т. 3. – М.: Наука, 1977.

7.                 Телеснин Р.В., Яковлев В.Ф. Курс физики. Электричество.-М.: Просвещение, 1970.

8.                 Сивухин Д.В. Общий курс физики. Т.3. Электричество.- М.: Физматлит МФТИ, 2002.

9.                 Руководство к лабораторным занятиям по физике. Под редакцией Л.Л. Гольдина, - М.: Наука, 1983.

ЛАБОРАТОРНАЯ РАБОТА № 5

ОПРЕДЕЛЕНИЕ ЕМКОСТИ  КОНДЕНСАТОРА ПО

ИЗУЧЕНИЮ ЕГО РАЗРЯДА


Цель работы:

 Экспериментальное изучение процессов разрядки и зарядки конденсатора через сопротивления.


Идея эксперимента

При зарядке  конденсатора через линейное сопротивление  напряжение UC на его обкладках растет по закону:

т.е. с течением времени напряжение увеличивается, асимптотически приближаясь к эдс  источника ε. В случае разряда конденсатора зависимость  напряжения от времени имеет вид:

,

т.е. с течением времени напряжение уменьшается по экспоненциальному закону, асимптотически приближаясь к нулю. Эти уравнения показывают, что процессы разрядки и зарядки происходят не мгновенно, а с конечной скоростью Быстрота установления электрического равновесия зависит от величины

τ=RC,

 имеющей размерность времени и называемой временем релаксации. Величина τ показывает, через какое время после начала разрядки напряжение на конденсаторе уменьшается в e ≈ 2,72 раза. Ток же при разрядке и зарядке изменяется по закону:

.

Если прологарифмировать это выражение, получим

Отсюда видно, что lnI является линейной функцией времени t с угловым коэффициентом 1/τ. (рис.1). Угловой коэффициент прямой есть скорость изменения функции по данному параметру и, следовательно, может

.


быть рассчитан как тангенс угла наклона прямой lnI(t) к оси абсцисс. Т.е.

.

 Таким образом, время релаксации цепи τ можно определить, построив график зависимости lnI(t) по экспериментальным результатам. Величина сопротивления R рассчитывается из соотношения RI0=ε. После определения R и τ, можно найти C  из соотношения:

С=τ/R.                                                       (1)

Теоретическая часть

В области электрических явлений большой интерес представляют переходные процессы, которые имеют место при разрядке и зарядке конденсаторов. Эти процессы используются во времязадающих узлах электронных схем, применяющихся в электронно-вычислительной технике (одно- и мультивибраторы), узлах развертки осциллографов, дисплеев, генераторов электрических колебаний звуковой и радиочастоты.

Задачи о зарядке и разрядке конденсатора, строго говоря, выходят за рамки учения о постоянных  токах. Приводимые ниже решения  получаются в предположении, что мгновенное значение тока одно и то же во всех поперечных сечениях провода, соединяющего обкладки конденсатора, а мгновенное электрическое поле такое же, как в электростатике при тех же зарядах на обкладках конденсатора. Токи и поля, удовлетворяющие этому условию, называются квазистационарными.

Если обкладки заряженного конденсатора (рис 2) соединить проводом, то по проводу потечет ток Пусть I, Q, и U - мгновенные значения тока, заряда на конденсаторе и напряжение на его  обкладках Считая ток в проводе положительным, когда он течет от положительной обкладки к отрицательной, можно написать:

где С - емкость конденсатора, R - сопротивление провода. Исключая I и U, можно получить:           

После интегрирования этого уравнения получается соотношение

                                                (1)

где Q0 - начальное значение заряда конденсатора (Q=Qo при t=0 ), а т -  время релаксации. Дифференцируя (1) по времени t, можно найти закон изменения разрядного тока во времени:

или

                                              ,                                                 (2)

где Iо = Q /τ   - начальное значение тока, т.е. ток при t = 0.

Аналогично решается задача о зарядке конденсатора. Пусть в цепь конденсатора с емкостью С включен какой-нибудь источник тока с постоянной электродвижущей силой ε  (рис.3).

Ток, идущий от источника, заряжает конденсатор. Электрические заряды, появляющиеся на обкладках конденсатора, препятствуют прохождению тока и уменьшают его. Можно записать, что

 ,      

где R - полное сопротивление провода, соединяющего обкладки конденсатора   и  внутреннее сопротивление источника. Исключая снова I и U,  получим уравнение     

или                               

Это неоднородное уравнение сведется к однородному, если его записать в виде   , так как εС = const. Решение этого уравнения получится в виде  

Значение постоянной интегрирования А найдется из условия, что в начальный момент времени конденсатор не заряжен, т. е. в этот момент времени Q = 0. Это дает А = -ε С,  следовательно, 

При  t → ∞ заряд конденсатора стремится к предельному значению

 Q =ε С. Для тока можно получить   или                                                         (3)

где  I0 = ε/R -  максимальный ток в начальный момент времени. В дальнейшем он убывает по экспоненциальному закону.

Экспериментальная установка

 Для экспериментального определения емкости конденсаторов в данной работе используется установка, принципиальная схема которой приведена на рис.4. Переключатель П служит для обеспечения разных режимов работы схемы. Положение 1-1 служит для измерения начального тока I0, положение 2-2 соответствует зарядке конденсатора, а  3-3 - его разрядке. С помощью переключателей П1 и П2 можно подключать различные сопротивления и конденсаторы


Проведение эксперимента

1.      Экспериментальную установку подключить к самопишущему устройству.

2.      Включить самопищущее устройство.

3.       Включить источник питания ВУП-2, убедившись, что ручка регулировки напряжения источника на нуле.

4.      Установить тумблеры переключателя рода работ в положение Io , R2, С2.

5.      Вращая ручку регулировки напряжения установить ток в цепи 90 мкА, напряжение при этом 185 В.

6.      Опустить перо на диаграммную ленту нажатием кнопки UP/DOWN на самопишущем устройстве и отметить ток 1о.

7.      Привести диаграммную ленту в движение кнопкой START/STOP, одновременно поставив переключатель рода работ в положение ЗАРЯД.

8.      Наблюдать за изменением силы тока, пока ток не станет равным нулю, подписать полученную диаграмму.

9.      Остановить движение ленты нажатием кнопки START/STOP.

10. Вернуть ленту в начальное положение нажатием кнопки FEED

11. Выполнить пункты 3-10 для R 1C2,   R2C1,   R1  C1.

12. Срезать диаграммную ленту.

13. Построить логарифмические кривые ln I=f(t) для полученных диаграмм (см. рис.1)

14. По графикам определить τ - время релаксации.

15. Заполнить таблицу

16. Определить по формуле  1   C1 и С2.


Таблица 1.



R 2C2


R2 C1


R1 C1


R1 C2


I1


















l2


















ln I1

















ln I2

















τ












R2 =

C2=


R2=

C1=


R1=

C1 =


R1=

С2=


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.