Меню
Поиск



рефераты скачать Проект электрокотельной ИГТУ

Приведём исходные данные для расчета ВЛ


Таблица 3.13. Данные для механического расчёта ВЛ.

Наименование характеристики

Величина

Номинальное напряжение

220 кВ

Сечение и марка провода

АС-150/19

Скоростной напор ветра

50 кг/м2

Ветровой район

III

Район по гололеду

I

Нормативная толщина стенки гололеда для данного района

5 мм

Сечение стали провода

19 мм2

Сечение алюминия провода

150 мм2

Общее сечение проводов

169 мм2

Диаметр провода

17 мм

Вес одного километра

671 кг

Длина пролета

170


При расчётах проводов на механическую прочность удобно пользоваться так называемыми удельными нагрузками, т.е. нагрузками, отнесёнными к единице длины провода и единице его поперечного сечения. Они представляют собой нагрузки на 1 м длины провода или отнесённые к 1 мм2 его поперечного сечения.

Определяем погонные и приведенные нагрузки на провод и трос:


 
Погонная нагрузка от собственного веса проводов


кг/м


 

 

 
Где - приведенная нагрузка = 3,46 · 10 ‾³ кг/м·мм2 S – общее сечение провода (мм² )

1.025 – коэффициент, учитывающий удлинение отдельных проводов при их скрутке в процессе изготовления провода.

 

 
Если провод диаметром d покрыт слоем льда толщиной b,то погонная нагрузка на провод от гололёда


кг/м


0.0009 кг/см3 – удельный вес льда.

Погонная нагрузка от массы провода с гололедом


P3=Р1+Р2=0.745+0.34=1.085 кг/м


Где P1 – погонная нагрузка собственного веса провода;

P2 – погонная нагрузка на провод при толщине стенки гололеда 5 мм.


Приведенная нагрузка


 кг/м·мм²



 
Где Р3 – погонная нагрузка от массы провода с гололедом (кг/м);

S - общее сечение провода, мм²


 
 
Полная нагрузка от ветра на провод без гололеда при направлении ветра перпендикулярно к оси провода:


 кг/м


Где -коэффициент неравномерности воздушного напора=0,79 при воздушном напоре

50 кг/м2 [14]

СХ – коэффициент лобового сопротивления для всех проводов и тросов, покрытых льдом и гололёдом принимаем СХ = 1,2 [14]; g - скоростной напор (кг/м² );

 

 

 

 
d – диаметр провода, мм;


 
Погонная нагрузка от ветра на провод с гололедом:


 кг/м


Результирующая удельная нагрузка на провод равна геометрической сумме вертикальных и горизонтальных нагрузок:


без гололёда  кг/м

с гололёдом  кг/м

 
Приведенная нагрузка без гололёда

 кг/м·мм²

с гололёдом кг/м·мм²


Определение критических пролетов.

Критическим пролётом называется пролёт такой длины, при котором наибольшее напряжение наступает как при наибольшей добавочной нагрузке, так и при наименьшей температуре. Формула критического пролёта имеет вид:



Где lКР – критический пролёт, м; σМ – максимальное напряжение, кг/см2;

γМАКС – удельная максимальная нагрузка, кг/м·мм2;

γМИН – удельная нагрузка при минимальной температуре, кг/м·мм2;

ТМАКС – температура при максимальной нагрузке, ˚С; ТМИН – минимальная температура, ˚С; α – температурный коэффициент линейного расширения материала провода, град-1.

При 40 ˚С удельная нагрузка равна γ1, а при гололёде (-5 ˚С) удельная нагрузка равна γ7. Подставляя эти значения в предыдущее уравнение и производя преобразования, получим выражение для критического пролёта в следующем виде:


,


где σДОП – допускаемое напряжение, кг/см2, меняется для провода в зависимости от условий, в которых он находится. Подставляем в это выражение значения коэффициента и удельные нагрузки и получим выражение для определения критического пролёта в зависимости от допустимого напряжения:



Приведём данные для провода АС-150/19 из [14] и подставим значения напряжения в формулу, тем самым получим критические длины пролётов для различных режимов работы.


Таблица 3.14. Максимально допустимые напряжения в проводе.

Допустимое напряжение в различных случаях, кг/мм2

Значение критического пролёта, м

При наибольшей внешней нагрузке

13.2

382.8

При низшей температуре, ˚С

10.5

333.5

При среднегодовой температуре, ˚С

8.8

181.25


Если действительный пролёт меньше критического, то наибольшее напряжение в проводе наступает при Т=-40 ˚С, а если больше критического, то при гололёде с ветром, величину этого наибольшего напряжения в проводе подставляем в формулу для определения напряжения для заданных условий, приведём её ниже. Расчёт согласно [14].



В нашем случае максимальное напряжение в проводе наступает при низкой температуре, так как действительный пролёт меньше критического. Значение напряжения для низкой температуры в [14] и составляет σМ=10.5 кг/мм2. Подставим величину известного напряжения для заданных условий в данное выражение и определим действительное напряжение в проводе при низкой температуре и ветре

Данные для определения напряжения:

Заданное механическое напряжение σM=10.5 при температуре ТМ=-40 ˚С и удельной нагрузке γ1=3.46·10-3 кг/м·мм2.

Модуль упругости Е=8.25·103 Па, тогда


-


коэффициент упругого удлинения материала, т.е. величина, показывающая изменение единицы длины провода при увеличении напряжения материала на 1 кг/мм2. α=23·10-6, град-1 – температурный коэффициент линейного расширения материала провода.

Подставим заданные и реальные значения для ветра и гололёда.

При данном сочетании параметров напряжение будет



Данное уравнение решаем в Mathcad-е и получаем два решения – комплексные числа и одно – действительное, оно и будет искомым напряжением в проводе при ветре и низкой температуре. σ=11.65 кг/мм2

Максимальным напряжением для данного провода является значение 13.2 кг/мм2, т.е. напряжение, возникающее в проводе при длине пролёта 170 м ветре и низкой температуре близко к максимальному, не превышает его, значит провод АС-150/19 пригоден к использованию.

Определим стрелу провеса провода


м


Длина провода в пролёте будет:


м


Нормативное расстояние от проводов ВЛ-220кВ до земли СН=7м.

Активная высота опоры Н-15м.

Максимальная высота провеса


SMAX = Н – (Сн + 0,4) = 15 - (7 + 0,4) =7,6 м (103)


Где 0,4 – запас в габарите на возможные неточности в монтаже.

В нашем случае максимальная высота провеса составляет 1.71 м, значит по этому пункту проверки провод тоже проходит.


 
На подходе к ГПП линия защищается грозозащитным тросом, представляющим собой стальной оцинкованный канат сечением 50 мм²

Выбор типа и расчет изоляторов арматуры Для гирлянд 220 кв.

Для установки принимаем подвесные фарфоровые изоляторы, которые предназначены для крепления многопроволочных проводов к опорам воздушных линий и наружных РУ.

Различают подвесные изоляторы тарельчатые и стержневые. Для установки выбираем тарельчатые изоляторы, предназначенные для местностей, прилегающих к химическим, металлургическим заводам, где воздух содержит значительное количество пыли, серы и других веществ, которые образуют на поверхности изоляторов вредный осадок, снижающий их электрическую прочность.

Тарельчатые изоляторы способны выдерживать натяжение порядка 10 – 12 кН. Механическую прочность изоляторов характеризуют испытательной нагрузкой, которую изолятор должен выдерживать в течение 1 часа без повреждений.

Расчетную нагрузку на тарельчатые изоляторы принимают равной половине часовой испытательной.

Гирлянды подвесных изоляторов бывают поддерживающими (располагаются вертикально на промежуточных опорах) и натяжные (размещаются на анкерных опорах почти горизонтально).

Количество изоляторов в гирлянде зависит от номинального напряжения и требуемого уровня изоляции. Количество изоляторов в поддерживающих гирляндах нормируется [15].

Поддерживающие гирлянды воспринимают нагрузку от веса провода и от собственного веса.

Определяем коэффициент запаса прочности [15].

При работе ВЛ в нормальном режиме П ≥ 2.7, при среднегодовой температуре, при отсутствии гололеда и ветра – не менее 5.0.


2.7(P7 · lВЕС + σГ) ≤ P

 

 
5 (P1 · lВЕС + σГ) ≤ P

2.7·(1.48·170.5 + 40) = 7893 Н

5 ·(0.599·170.5 + 40) =710,6 Н


где Р – электромеханическая нагрузка изолятора [15];

Р1,Р1 - единичная нагрузка соответствующей массы провода и от веса провода с гололедом (механический расчет ЛЭП);

lВЕС - весовой пролет (м); σГ - масса гирлянды для ВЛ-220 кВ (составляет 40 кГс/см).

Выбираем гирлянды типа ПФ-16Б. Гарантированная прочность 12000Н по 6 элементам в гирлянде.

Выбираем тип изоляторов натяжных гирлянд, воспринимающих нагрузку от тяжести провода и собственного веса.


 

 
Усилие на изоляторы от провода при гололёде:


Н,


где σГ – значение напряжения в проводе при гололёде.

Усилие, создаваемое весом провода при температуре воздуха –40 ˚С и ветре:


Н,


где σН – значение напряжения в проводе при низкой температуре и ветре.


 

 
S – полное сечение провода (мм ²);

P6, P1 - единичная нагрузка от собственной массы провода и от веса провода с гололедом (механический расчет ЛЭП);

l - весовой пролет (м);

БГ - масса гирлянды для ВЛ-220 кВ (40кгс/с)

Выбираем гирлянды изоляторов типа ПФ16-А с гарантированной прочностью 82000Н по 18 элементов в гирлянде.

 

3.8 РАСЧЕТ ТОКОВ ТРЕХФАЗНОГО КОРОТКОГО ЗАМЫКАНИЯ

 

Схема замещения для расчета токов короткого замыкания составляется по расчетной схеме сети.Расчет токов короткого замыкания производится в относительных единицах, для чего выбираются базовые величины или условия: мощность, напряжение, ток и сопротивление.



Принимаем базисную мощность : SБ=100 МВА

В качестве базисного напряжения принимаем напряжение ступени короткого замыкания, в зависимости от которого вычисляется базисный ток:


1.UБ1 = 230 кВ


2.

U Б2 = 6,3 кВ


3.

U Б3 = 0,4 кВ


Расчетные выражения приведенных значений сопротивлений:



1.                 Энергосистема:

где Iотк.ном = 20 кА – номинальный ток отключения выключателя.

2.                 Воздушная линия 220 кВ:


где х0 = 0,35 Ом/км – удельное индуктивное сопротивление жилы кабеля на километр длины [11];

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.