Рис.3.2.1
Спектр фотолюминесценции образца ZnS:Mn:Cu в стационарном (1) и
динамическом (2) режиме возбуждения.
Из приведенного рисунка следует, что
спектр люминесценции исследуемого образца является сложным и состоит из двух основных полос с
максимумами при 460 и 580нм. Главная полоса с
максимумом в длинноволновой области, безусловно,
отвечает желто-оранжевому свечению марганца в ZnS [7].
Полоса, локализованная в коротковолновой области спектра вызвана, видимо,
центрами свечения, образованными ионами примесной меди и собственными
дефектами основы [73]. Так как описываемые центры различны по своей природе, то изменение
относительной полос при переходе от стационарного к динамическому возбуждению
вполне логично, и позволяет провести разделение спектра люминесценции образца на две главные
составляющие (коротковолновую и длинноволновую)
методом Аленцева-Фока. Результаты такого разложения представлены на рис.3.2.2.
430 460 490 510 540 570 600
630
Длина волны, нм
Рис.3.2.2. Разложение сложной спектральной характеристики
люминесценции образца ZnS:Mn:Cu на две
составляющие методом Аленцева-Фока.
Из данного рисунка следует, что полоса с максимумом при 460нм (контур «А»
на рис.3.2.2) в спектральном распределении люминесценции ZnS:Mn:Cu, очевидно, носит сложный характер,
и состоит из нескольких подполос. Вместе с тем,
из литературных источников известно, что желто-оранжевая полоса излучения
Мп в ZnS (контур «В» на рис.3.2.2)
также неэлементарна. Исследование тонкой
структуры основных полос спектра (т.е. разделение их на элементарные подполосы)
представляет большой интерес, так как дает возможность судить непосредственно о центрах свечения. Однако
произвести разделение методом Аленцева-Фока в данном случае достаточно
трудно. Для этого необходимо целый ряд
образцов, отличающихся условиями синтеза, например, концентрациями активаторов
и коактиваторов. Кроме того, из-за большого числа и сильного перекрывания
элементарных составляющих определение количества компонентов по числу горизонтальных площадок может быть очень
неточным [67].
Для анализа структуры полос «А» и «В»
в спектральном распределении люминесценции ZnS:Mn:Cu использовался
метод, предложенный в работе [67]. Этот метод основан на
предварительном анализе структуры спектра по второй производной для
отыскания количества компонентов и положения их максимумов. Так на
рис.3.2.3 представлены результаты математического разложения сложного
контура «А» на элементарные гауссовы составляющие.
430 460 49O 52O 550
Длина волны, нм
Рис.3.2.3. Разложение
контура А на элементарные составляющие.
Как видно из рис.3.2.3, контур «А» можно
разделить на шесть элементарных подполос с λmax
= 447нм для полосы №1, 457нм - для полосы №2, 472нм - для полосы №3, 495нм - для полосы №4, 506нм - для
полосы №5 и 526нм - для полосы №6 (см. табл.3.2.1).
Табл.3.2.1
Характеристики
элементарных полос в контуре «А» спектра ZnS:Mn:Cu
№ полосы
|
λmax
|
Отн. интенсивность
|
1
|
448нм (б)
|
7,8
|
2
|
457нм (д)
|
7,6
|
3
|
472нм(г)
|
8
|
4
|
495нм (а)
|
4,8
|
5
|
506нм (II зеленая)
|
3,1
|
6
|
526нм
|
3
|
Здесь необходимо отметить, что
разложение спектра фотолюминесценции не содержащего Мn исследуемого
промышленного образца ZnS:Cu (электролюминофор Э-455-115)
приводит к похожим результатам (рис.3.2.4). При анализе спектра
излучения ZnS:Cu проявляются
пять элементарных составляющих, максимумы которых приходятся
на 434нм для полосы №1', 447нм - для полосы №2', 459нм - №3', 473нм-
№4', 495нм - для №5' (табл.3.2.2).
Табл.3.2.2
Характеристики элементарных полос в спектре ZnS:Cu
№ полосы
|
λmax
|
Отн.
интенсивность
|
1'
|
434 нм (в)
|
3,9
|
2'
|
448 нм (б)
|
5
|
3'
|
459 нм (д)
|
4,3
|
4'
|
472 нм (г)
|
3,2
|
5'
|
495 нм (а)
|
4,5
|
Рис.3.2.4 Результаты разложения спектров
фотолюминесценции образца ZnS:Cu:Cl (Э-455-115).
Как видно из приведенных выше таблиц 3.2.1 и
3.2.2 максимум полосы №1 в спектральном распределении ZnS:Mn:Cu совпадает
с максимумом для полосы №2' в спектре люминесценции ZnS:Cu, Вместе с тем, максимум полосы №4 (табл. 3.2.1) соответствует максимуму полосы
№5'(табл.3.2.2), а значение максимума полосы
№3 - полосе №4'. На основании экспериментальных данных можно сделать предположение, что за эти полосы в образцах
ZnS:Mn:Cu и ZnS:Cu ответственны центры
одного и того же типа. Полосу №2 с λmax = 457нм в
контуре «А» спектра ZnS:Mn:Cu можно
с большой степенью вероятности отождествить полосе №3' с λmax = 459нм в спектре
образца ZnS:Cu. Незначительные
расхождения
в положениях максимумов здесь можно объяснить различными условиями синтеза
исследуемых образцов, различными концентрациями активатора (Си) и некоторой погрешностью
эксперимента.
Далее возникает необходимость в
построении зонной диаграммы рассматриваемых люминесцентных структур, т.к. возможность
идентификации и отождествления центров
люминесценции с определенными дефектами структуры фосфора весьма важна
для дальнейшей обработки результатов.
Рис. 3.2.5. а - зонная схема люминофора ZnS:Cu с
указанием положения возможных точечных дефектов относительно
валентной зоны и зоны проводимости; б - схема возможных электронных переходов,
ответственных за люминесценцию
образца.
Природа дефектов кристаллической
решетки цинксульфидных структур изучена достаточно хорошо. Ширина запрещенной
зоны исследуемых люминофоров, рассчитанная по стандартной методике из
спектров диффузного отражения, составила величину около 3,7 эВ, что
соответствует литературным данным [73]. Поэтому имеется возможность на основе
полученных результатов и анализе литературных данных построить модели основных
оптических переходов в исследуемых ZnS:Cu фосфорах. Итак, анализируя работы
[1,74], можно представить зонную диаграмму люминофора ZnS:Cu следующим
образом (рис.3.2.5а). Сопоставление расчетных энергий возможных
электронных переходов со значениями в максимумах элементарных полос
излучения приводит к следующему результату — рис.3.2.5б (соответствующие
переходы обозначены буквами в таблицах). Абсолютная погрешность при этом
составляет величину 0,05 эВ.
Наиболее интенсивные полосы №2' и 5' в
спектре люминесценции образца ZnS:Cu(Cl) (Э-455-115) (рис.3.2.4) принадлежат,
вероятно, примесным центрам свечения, т.е. центрам, образовавшимся при
растворении активатора (Си) в решетке основы. Так известно [73], что рекомбинация на уровнях
примесной меди в ZnS сопровождается
появлением зеленой полосы излучения света с максимумом при hv = 2,5эВ
(495нм). Данная энергия соответствует переходу электрона с уровня
вакансии серы на уровень примесной меди Cu'Zn, однократно отрицательно
заряженный атом меди в подрешетке цинка (переход а на рис.3.2.5б).
Т.е. образуется комплекс Vs*-Cu'Zn. Подобные центры,
очевидно, отвечают за элементарную полосу №4 (рис.3.2.3, табл.3.2.1) в контуре «А»
излучения образца ZnS:Mn:Cu и, соответственно, полосу №5 (рис.3.2.4, табл.3.2.2) в спектре люминесценции исследуемого образца ZnS:Cu, что
подтверждается анализом
дефектной ситуации. Основными типами дефектов для этого образца должны быть
вакансии серы и медь на месте цинка. Здесь необходимо заметить, что согласно данным [1] в результате проведения высокотемпературного синтеза приповерхностный слой
кристаллофосфора оказывается сильно обогащен как VS, так и Cu'Zn- На расположение "зеленых"
центров свечения меди в приповерхностных слоях зерен ZnS прямо указывается в работе [46].
Однако медь, внедряясь в сульфид цинка,
образует как зеленые, так и голубые центры свечения с длиной волны
излучаемого света порядка 450нм [73]. В работе [2] высказано предположение,
что такие центры представляют собой более сложные образования с участием ионов
меди. Например, возможно формирование какого-либо ассоциата [1]. Но
расчетная энергия кванта, излучаемого электроном при переходе со дна
зоны проводимости на уровень Cu'zn составляет величину 2,75эВ (длина волны кванта 449нм), что
позволяет связать тождественные полосы №1 в спектре излучения образца ZnS:Mn:Cu (табл.
3.2.1) и №2' для образца ZnS:Cu (табл.3.2.2)
именно с таким переходом (переход б на рис.3.2.5 б).
Эксперимент и теоретический анализ [75]
показывают, что собственные атомные дефекты в значительной степени определяют свойства
сульфида цинка, в частности спектры
излучения и поглощения. Изучая экспериментальные данные, можно сделать
вывод, что за элементарные полосы № 1' и 4' в спектральном распределении исследуемых образцов ZnS:Cu (рис.3.2.4)
ответственны центры, образованные собственными дефектами в ZnS. Причем в
состав каждого из них входит V'Zn. Сравнение
максимальных значений энергий hv элементарных полос, характеризующих
люминесценцию образцов, с возможными электронными переходами на зонной
диаграмме (рис.3.2.5б) приводит к следующим результатам. Центр VS-V'Zn должен
излучать кванты с длиной волны λmax = 474нм
(переход г на рис.3.2.5б), а максимум полос №4' и №3 приходится на
472нм. Здесь необходимо отметить, что согласно литературным данным
[76] в области твердого раствора ZnO в ZnS (ZnS-xZnO) могут
образовываться центры люминесценции, способные излучать с длиной
волны λmax = 470нм. Таким
образом, природа полосы №4' и №3 в спектральном распределении исследуемого
образца может оказаться сложной и включать как люминесценцию
самоактивированного, так и окисленного ZnS, однако разделение
этих полос практически неосуществимо из-за их сильного перекрытия. Полосе №1' (рис.3.2.4) в
спектральном распределении излучения образца ZnS:Сu очевидно
соответствует переход электрона со дна валентной зоны на уровень V"Zn (переход
в на рис.3.2.5б). Расчетная энергия кванта, излучаемого при таком
переходе равна 2,86эВ, а максимум элементарной полосы №1' приходится на
длину волны 434нм, т.е. около 2,85эВ.
Центр №3'(для ZnS:Cu) и №2 (для ZnS:Mn:Cu) образован,
вероятно, атомом меди в интерстиции и V'zn (переход д на
рис.3.2.5б). Энергия такого перехода равна 2,71 эВ.
Как видно из приведенных рисунков, аналогов полосы излучения ZnS:Mn:Cu №5 с λmax = 506 нм в спектре исследуемого образца ZnS:Cu {Э-455-115} не наблюдается. Однако, из литературных данных известно [77], что у ряда ZnS:Cu люминофоров с небольшой
добавкой С1 и А1 при 508нм наблюдается так называемая
вторая зеленая полоса меди. Доказательством этого предположения может служить разложение спектра люминесценции образца ZnS:Cu:Al {Э-515- 115}, основу которого составляет, по-видимому, именно эта
полоса (№3" на рис.3.2.6, табл. 3.2.3).
Рис. 3.2.6. Результаты разложения спектров
фотолюминесценции образца ZnS:Cu:Al (Э-515-115).
Полосы №1" и №2" с максимумами при 479нм (2,59эВ) и
495нм (2,5эВ) в спектральном распределении образца ZnS:Cu;Al (рис.
3.2.6) можно соотнести с переходами а и е (рис.3.2.5б),
обусловленными центрами (Cls-V'Zn) с hv1'=2,58эВ, и (Vs - Cu'Zn); hv2' = 2,5эВ, соответственно. Таким образом,
полоса №2" в спектре люминесценции образца ZnS:Cu:Al с λmax =495нм (рис.3.2.6) соответствует
полосе №5' у образца ZnS:Cu (рис 3.2.4).
Элементарная составляющая №3", являющаяся в данном случае
характеристической для люминофора Э-515-115, имеет максимум при 507нм и,
вероятно, соответствует второй зеленой полосе меди. Механизм люминесценции
здесь, является сложным и не изображен переходами на зонной диаграмме. Более
подробно он рассмотрен ниже.
Табл. 3.2.3 Характеристики элементарных полос в спектре ZnS:Cu:Al
№ полосы
|
λmax
|
Отн. интенсивность
|
1"
|
479нм (е)
|
2,2
|
2"
|
495нм (а)
|
2,3
|
3"
|
507нм (II зеленая)
|
7,6
|
Возвращаясь
к люминесценции ZnS:Mn:Cu в коротковолновой части спектра (табл. 3.2.1),
необходимо отметить, что еще одной характеристической составляющей излучения
данного образца является полоса №6 с λmax = 526нм. Подобные полосы отсутствуют в
спектрах люминесценции других исследуемых структур, однако известно [78], что
максимум второй зеленой полосы излучения меди
в ZnS
может сдвигаться в длинноволновую область спектра до значения 530нм при переходе от вюрцита к
сфалериту.
Рис. 3.2.7.
Результат разложения контура В излучения образца ZnS:Mn:Cu на элементарные
составляющие.
Разложение спектра люминесценции
образца ZnS:Mn:Cu в
длинноволновой области (контур «В» на рис. 3.2.2) приводит к результату,
изображенному на рис. 3.2.7. Характеристики элементарных составляющих указаны в таблице
3.2.4.
Табл. 3.2.4
Характеристики
элементарных полос в контуре «В» спектра ZnS:Mn:Cu
№ полосы
|
λmax
|
Отн. интенсивность
|
7
|
558нм
|
2,9
|
8
|
570нм
|
4
|
9
|
580нм
|
4,8
|
10
|
599нм
|
8,5
|
Необходимо отметить, что разложение спектра
люминесценции исследуемого образца ZnS:Mn не содержащего Си также приводит к,
аналогичному результату. Как видно из данной схемы (рис.3.2.8), сложный контур спектрального
распределения люминесценции можно разбить на четыре
полосы: №7' с максимумом при 556нм (2,23эВ), №8' - при 569нм (2,17эВ), №9' - при 577нм (2,14эВ) и №10' - при 595нм
(2,07эВ) - табл.3.2.5.
Рис.3.2.8. Результаты разложения спектров фотолюминесценции исходного образца ZnS:Mn.
Табл. 3.2.4 Характеристики элементарных полос в спектре
образца ZnS:Mn
№ полосы
|
λmax
|
Отн. интенсивность
|
7'
|
556нм
|
4
|
8'
|
5б9нм
|
1,5
|
9'
|
577нм
|
7,5
|
10'
|
595нм
|
5,5
|
Страницы: 1, 2, 3, 4, 5
|