Меню
Поиск



рефераты скачать Лекции по физике за 2 семестр


            Берём замкнутый контур, вычисляем циркуляцию. Второе уравнение утверждает, что, какой бы контур мы не взяли, циркуляция равна нулю. Отсюда следует, что силовые линии электромагнитного поля не могут быть замкнутыми. Мы могли бы взять контур, совпадающий с этой линией, скалярное произведение не меняет знак, следовательно, интеграл не равен нулю. Силовые линии не могут быть замкнуты, но тогда что с ними?

Имеется некоторая область, из которой силовые линии выходят, тогда берём замкнутую поверхность S и по этой замкнутой поверхности . Это означает, что q>0.

Если наоборот, силовые линии входят в область, эту область окружаем поверхностью, тогда интеграл отрицательный. Нормаль направлена наружу, в первом случае произведение  положительно, а здесь отрицательно.

Можно сказать, что силовые линии электростатического поля начинаются на положительных зарядах и заканчиваются на отрицательных или уходят в бесконечность, но не может быть так, чтобы линия замкнулась на себя. Для магнитного поля, мы увидим дальше, что силовые линии всегда замкнуты, в отличие от электростатических, которые никогда не замкнуты.



Потенциал


Вот такое математическое утверждение: .

Вы, вот, словами должны читать сами формулы. Кстати, физику можно излагать без слов, так же, как математику. Из того, что циркуляция для любого контура равна нулю, следует, что векторное поле  может быть выражено через некоторую функцию от , называемую градиентом скалярного  поля : . Любому скалярному полю j можно поставить в соответствие векторное поле  вот по такому рецепту. Это векторное поле называется градиентом скалярного поля j.

Смысл векторного поля.  - это вектор, направление вектора  это направление, в котором функция j меняется наиболее быстро. Направление вектора  это направление быстрейшего изменения функции j, а величина вектора характеризует скорость изменения функции j в этом направлении. Ну, скорость по отношению к пространственному перемещению.


Температура, заведомо скалярная величина. В данной точке сунули термометр, он что-то показал, сунули в другую, он покажет другую температуру. А теперь, градиент от этого скалярного поля. Температура в данной точке такая, сместились в эту сторону на метр - другая температура, и так во все стороны, где температура выше, туда будет направлен её градиент , а величина этого вектора .

Другой пример - плотность. Имеем стационарную атмосферу. Направление градиента плотности воздуха будет по вертикали и именно сверху вниз (вниз плотность будет возрастать).


Вот смысл градиента.


Это следствие  чисто математическое, это можно доказать. Что физически означает уравнение ?    Какую физическую интерпретацию можем ему дать?

Рассмотрим некоторую кривую с направлением. Вот имеем электрическое поле:

Возьмём точечный заряд q и будем перемещать заряд по заданной кривой из точки (1) в точку (2). Поскольку на заряд действует сила со стороны электрического поля, работа электрического поля при перемещении заряда вдоль кривой  равна: . Работа, которая совершается электрическим полем при перемещении заряда, если я взял и принёс заряд из точки (1) в точку (2), а потом принёс его обратно (контур замкнулся!). То тогда следует, что .

Работа по перемещению заряда по замкнутому контуру равна нулю.

Это означает другое: что работа по перемещению заряда из точки (1) в точку (2) не зависит от пути перемещения.

Это, может быть, не очень очевидно. Вот я перешёл по некоторому пути из (1) в (2), поле совершило некоторую работу, кстати, эта работа положительна. Положу рельсы из точки (1) в точку (2). Поставлю на них вагончик от игрушечной железной дороги, помещу в вагончик заряд, и этот вагончик поедет, (избыток кинетической энергии перейдёт во внутреннюю). В точке (2) перевожу стрелки и пускаю вагончик по другому пути. Так вагончик будет ездить, к нему можно приделать вертушку... но известно, что циркуляция  ноль, и построить вечного двигателя нельзя.

А теперь мы имеем такой математический результат: . Электростатическое поле – это градиентное поле. Эта скалярная функция , градиентом которой является напряжённость электрического поля, называется потенциалом электрического поля.

            Не всякое векторное поле можно получить как градиент потенциала. Электростатическое поле представляется одной скалярной функцией координат, а не тремя, как можно было бы думать по его векторному характеру. Задать одну функцию координат – и получим картину электрического поля.


Какой физический смысл этого скалярного поля?


                                                             (*)

А теперь займёмся тем, что у нас стоит под интегралом. , вектор  - это есть: , а вся подынтегральная конструкция  есть полный дифференциал.


Тогда, возвращаясь к формуле (*), мы пишем:

Мы придём из точки (1) в точку (2), суммируя изменение потенциала. Мораль такая: вот у нас начальная точка , заряд переносим в точку , здесь значение потенциала j(), и работа равна . Работа по перемещению заряда из одной точки в другую равна величине заряда, умноженной на разность потенциалов.

Теперь мы имеем два описания электростатического поля. Либо мы задаём напряжённость , либо мы задаём в каждой точке потенциал j. Слова «разность потенциалов» вы должны понимать буквально – это разность. Вот синоним разности потенциалов, который употребляется в электротехнике, - напряжение. Это означает, что многие из вас склонные употреблять слова «напряжение в цепи»  не знали их значения. Это синоним разности потенциалов.


Что означают слова, что напряжение городской сети 220 вольт? Вот есть две дырки (разность потенциалов между дырками 220V), если вы вырвете заряд из одной и будете с ним ходить, а потом вернёте его в другую дырку, то работа поля будет равна V. Нагляднее пример с аккумулятором: вы взяли металлический шарик с клеммы аккумулятора, положили его в карман, ходили где-то с ним и потом приложили его ко второй клемме, то работа будет такая: V.


3

Там, где у нас было напряжение и разность потенциалов, добавьте такую формулу: .

Вот точка , вот точка , эта кривая , и смысл такой: вот эта формула – универсальный железный рецепт для нахождения разности потенциалов. Если вы когда-нибудь сталкиваетесь с требованием или потребностью найти разность потенциалов между двумя точками, значит, рука должна автоматически писать эту формулу, а когда мы её напишем, потом можно думать. Слова «разность потенциалов» должны просто рефлекторно вызывать вот эту формулу.

О чём речь? В чём рецепт? Если вам надо найти разность потенциалов между одной точкой и другой, когда напряжённость поля во всём пространстве задана (вектор напряжённости поля), рецепт: соедините точку 1 с точкой 2 кривой  и вычислите вот такой интеграл . Результат не зависит от выбора пути, ну, и поэтому  его можно всегда выбирать наиболее разумным способом.


 Ну, к примеру, что значит разумная выборка? Вот допустим у вас силовые линии поля вот такие радиальные кривые:








И вам надо найти потенциал вот точка 1 ну, а, допустим, вот точка 2. Как выбрать кривую, идущую из 1 в 2? Первая мысль, конечно, взять её вот так: провести по линейке, по ней вычислять. Мысль, конечно, быстрая, но не очень правильная, потому что во всех точках этой кривой вектор переменный и направлен ещё под углом к прямой, и угол ещё меняется – взять интеграл сложно. Зато, через точку 2 проведёте сферу и путь такой: вдоль радиуса – раз, и потом вот по этой дуге – два. Вот разумный выбор кривой. Почему? Потому что вот на этой ветке вектор  всюду параллелен прямой, интеграл немедленно сводится просто к обыкновенному интегралу, а вот на этой ветке вектор  всюду перпендикулярен кривой, и она никакого вклада не делает. Вот разумный выбор кривой для нахождения разности потенциалов.


Ну, это в качестве примера. Если представлять себе конкретный вид поля, то такая кривая легко находиться, учитывая, что у вас поля произвольной конфигурации, сложной, не будут попадаться, ну, вот здесь у нас в процессе занятия электродинамикой. Ну, конечно, если задано какое-нибудь такое, очень произвольное, поле, то там нет возможности выбирать кривую специальным образом, ну и тогда надо там линейку приложить, но это математическая проблема, можно посчитать. Так, ладно, всё. Следующий пункт.


Поля, создаваемые распределениями зарядов с хорошей симметрией


Ну и сразу такое определение: при достаточно хорошей симметрии напряжённость поля может быть найдена из уравнения . Значит, при достаточно хорошей симметрии поле всегда может быть найдено вот из этой интегральной теоремы. Ну, у нас это первое уравнение Максвелла. А теперь частные случаи.

 

1) Центральная (сферическая) симметрия. Пусть плотность заряда  есть . Значит, плотность, которая, вообще, функция координат точки , зависит только от , то есть только от расстояния до начала координат, это означает, что начало координат – центр симметрии. Вот эта формулка = означает, что плотность на любой сфере радиуса r – константа, какая-то там плотность, ну, и отличная от нуля, на любой сфере она постоянна. Это означает, что распределение обладает сферической симметрией, и создаваемое им поле будет также обладать сферической симметрией. Отсюда следует, что  (потенциал как функция точки) это есть . Отсюда эквипотенциальные поверхности – сферы с центром в начале координат, то есть вот на любой сфере потенциал – константа. Отсюда далее следует, что силовые линии поля, которые являются всегда ортогональными к эквипотенциальным поверхностям, силовые линии поля – вот такие радиальные лучи:

Конструкция электрического поля может быть только такая. А теперь заметьте, здесь никакой специфики электричества не было, все эти выводы получены только из соображений симметрии. Любое векторное поле имело бы такую структуру, какая бы физическая природа у него ни была. Только сила соображения симметрии очень часто позволяет делать выводы безотносительно к конкретному предмету разговора.

=, отсюда дальше следует, что напряжённость поля на любой сфере может быть представлен так: . Вот это , радиус-вектор, делённый на собственный модуль, есть единичный вектор  в направлении радиус-вектора. Всё. Пишем дальше эту формулу . В качестве замкнутой поверхности, которая фигурирует в интеграле (поток вычисляется по замкнутой поверхности), выбираем сферу . Мы её (поверхность) можем брать любой, равенство от этого не зависит, но удобно взять . Пишем: . Это равенство вследствие того, что , - единичный вектор в направлении радиус-вектора (это вектор нормали к сфере, но нормаль к сфере в данной точке совпадает по направлению с радиус-вектором данной точки, эти векторы параллельны), а проекция радиус-вектора на самого себя – это его модуль, конечно, . Дальше,  во всех точках сферы одно и тоже, выносим за знак интеграла:  (вот это всё была математика, она к физике никакого отношения пока не имела, а физика – это следующее равенство), эта величина должна равняться интегралу от плотности заряда по объёму сферы, по которой вычисляется поток (интеграл от плотности по объёму это есть полный заряд внутри сферы): , где  – заряд внутри сферы радиуса . И это утверждение верно для сферы любого радиуса. Отсюда вывод – при центральной симметрии напряжённость поля во всех точках сферы радиуса  равна:

,

где  - единичный вектор нормали к сфере. Эта формула, одна единственная, добивает все задачи центральной симметрии. Проблема одна – найти заряд, который находится внутри данной сферы, ну, это не очень тяжёлая проблема.

Можем немножко продолжить это дело. Вследствие того, что на любой сфере ,  интеграл по объёму можно свести, в принципе, к однократному интегралу, интегрируя по шаровым слоям, ну, напишу тут без подробных комментариев . Вот это  объём шарового слоя радиуса  толщиной . Почему я тут штрихи поставил, понятно.  стоит в верхнем пределе интеграла, ну тогда, чтоб не путать переменную интегрирования с верхним пределом, там я вместо  пишу . Значит, если вот эта функция  предъявлена, то такой интеграл вычисляется. Так, всё, с центральной симметрией конец. Второй случай.

2) Цилиндрическая симметрия. Вводим цилиндрические координаты , переходит в . Вот у нас в цилиндрических координатах плотность  есть только функция от , то есть не зависит от  и не зависит от . Это означает, что имеется бесконечный цилиндр, и на поверхности цилиндра любого радиуса плотность заряда постоянна, и всё это дело продолжается до бесконечности по , вот такая ситуация. Сразу, конечно ясно, что физически это не реализуется, но в качестве некоторой идеализации это разумно. Напишем снова , значит, эквипотенциальные поверхности – это цилиндры с осью, совпадающей с осью симметрии, то есть с осью . А силовые линии лежат в плоскостях ортогональных оси . Так. В качестве замкнутой поверхности выбираем цилиндрическую поверхность радиуса  и высотой , цилиндрическая поверхность, закрытая двумя крышками для того, чтобы она была замкнутой. Нормаль всегда берётся наружу. Из соображений симметрии ясно  (напряжённость поля в любой точке цилиндрической поверхности направлена вдоль вектора  , а величина зависит только от расстояния до оси симметрии). Поскольку у нас поверхность теперь задана в виде нескольких кусков, интеграл представится как сумма интегралов по этим кускам: .

Интеграл по крышкам равен нулю, потому что вектор  скользит по крышкам, скалярное произведение с нормалью – ноль. .

Внутренняя начинка этого цилиндра , это интеграл по . , где  - это заряд на единицу длины цилиндра радиуса , то есть это заряд лепёшки радиуса  единичной толщины. Отсюда мы получаем результат:

напряжённость поля во всех точках цилиндрической поверхности радиуса .

Эта формула убивает все проблемы, связанные с цилиндрической симметрией. И, наконец, третий пункт.



3)  Поле, создаваемое равномерно заряженной плоскостью. Вот мы имеем плоскость YZ, заряженную до бесконечности. Эта плоскость заряжена с постоянной плотностью s. s называется поверхностная плотность заряда. Если взять элемент поверхности , то в нём будет заряд . Значит, симметрия такова, что при сдвигах вдоль  y и z ничего не меняется, это означает, что производные по y и z от чего угодно должны равняться нулю: . Это означает, что потенциал есть функция x только: . Вот такое следствие. Это означает, что любая плоскость ортогональная оси x является эквипотенциальной поверхностью. На любой такой плоскости j=const. Силовые линии ортогональны этим плоскостям, значит силовые линии – прямые параллельные оси x. Из соображений симметрии следует, что, если здесь они идут вправо от плоскости, то слева они должны идти влево от плоскости  (ожидается, что имеется зеркальная симметрия).

Вопрос, на самом деле, с зеркальной симметрией не такой простой. Вот ещё до не очень давнего времени, ещё на моей памяти, считалось, что зеркальная симметрия, конечно, имеет место в природе, что нет отличия между левым и правым. Но обнаружили в 60-х гг., что на самом деле такая симметрия не выполняется, природа отличает правое от левого. Будет ещё повод об этом поговорить. Но здесь это для нас выполняется.

Пусть  – единичный вектор вдоль оси x. В качестве замкнутой поверхности берём цилиндр, прорезающий плоскость с двумя крышками. Напряжённости поля показаны на рисунке.

Интеграл по боковой поверхности ноль, потому что силовые линии скользят по боковой поверхности. Но как площади оснований цилиндра . Если крышки взяты на одинаковых расстояниях от плоскости, то опять вследствие симметрии  - функция расстояния до плоскости, тогда мы напишем так: . Тогда мы имеем:  , а это заряд, который сидит внутри нашей поверхности.

Отсюда получается: . Что мы видим, что длина цилиндра, ну,  расстояние от крышек до плоскости, выпало из формулы, то есть на любом расстоянии от плоскости напряжённость поля одна и та же. Значит поле однородное. Напишем окончательно:


Эта формула автоматически учитывает и знак заряда: если. Вот  эта формула даёт исчерпывающее описание поля заряженной плоскости. Если там не плоскость, а площадь конечной толщины, то поле надо разбить на тонкие пластины и вычислять.

Вот заметьте, для точечного заряда напряжённость поля убывает с расстоянием как , для цилиндра – как  и для плоскости вообще не убывает.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.