Меню
Поиск



рефераты скачать Электроснабжение 8-го микрорайона города Оренбурга

132

0,97

0,25

33

Дет.сад№ 41

280

-

0,4

112

0,97

0,25

28

Дет.сад № 42

280

-

0,4

112

0,97

0,25

28

Школа № 43

700

-

0,22

154

0,95

0,38

58,5

Торговый центр № 44

 

 

 

 

 

 

- прод.магазин

-

300

0,22

55

0,8

0,75

49,5

-пром.магазин

-

900

0,14

126

0,9

0,48

60,5

-парикмахерская

7

-

1,3

9,1

0,97

0,25

2,9

- кафе

50

-

0,9

45

0,98

0,2

9

Прд.магазин № 45

-

100

0,22

22

0,8

0,75

16,5

ИТОГО

-

-

-

778,1

-

-


По микрорайону нагрузка составит:


РΣ=Рр.ж.д+Ркв+Рр=1065,7+1174,7+778,1=3018,5


4 Выбор величины питающего напряжения



Согласно /3/ для городской питающей сети целесообразно применять систему электроснабжения напряжений 110-35/10/0,4 кВ.


В качестве основного для городской питающей среды принимается   10 кВ, которое характеризуется меньшими капиталовложениями и потерями в сетях по сравнению с системой 6 кВ.


Городские электрические сети напряжением 10 кВ выполняются трехфазными с изолированной нейтралью.


Для распределительной сети низкого напряжения основным напряжением является 380/220 В, сеть выполняется четырехпроводной с глухозаземленной нейтралью.


5 Выбор местоположения и числа трансформаторных

    подстанций



Важной целью проектирования является выбор оптимального числа местоположения потребительских ТП. Районирование электрических нагрузок является неотъемлемой частью решения этой задачи.

Площадь микрорайона составляет 0,33 км2. Суммарная активная расчетная нагрузка составляет – 3018,5 кВт. Плотность нагрузки составит = 9,11 Вт/м2.

Согласно проектным нормативам предусматривается, что протяженность кабеля от ТП к зданиям не должна превышать 400 м /4/. В городской жилой застройке между зданиями размещаются детские и спортивные площадки, не всегда удается расположить подстанцию в центре электрических нагрузок. Поэтому, согласно рекомендации проектирования городских сетей /3/ недопустимо превышение протяженности кабеля.

Согласно данному генеральному плану микрорайона видно, что он представлен в виде прямоугольника 720x460 м. Мысленно микрорайон разбиваем на 6 частей. Принимаем 6 потребительских подстанций для обеспечения надежности электроснабжения и уменьшения экономических показателей.

РП-10кВ удобнее с точки зрения электроснабжения расположить со стороны питания, от подстанции «Шелковая», и по архитектурным соображениям совместить РП с ТП №2.

Согласно /5/ трансформаторную подстанцию располагаем ближе к ЦЭН, так как это позволяет приблизить высокое напряжение к центру потребления электроэнергии и значительно сократить протяженность распределительной сети низкого напряжения, уменьшив тем самым расход проводникового материала и снизить потери электроэнергии.

Координаты ЦЭН определяются по формулам:


(5.1)

 

 

 

 

 

 

(5.2)







Пример расчета ЦЭН для ТП №3.

Данные об электроприемниках, питающихся от ТП №3, и их координаты сведены в таблицу 4.


Таблица 4

Номер объекта по плану

Рр, кВт

X, см

Y, см

Жилой дом № 31

49,7

55,6

43

Жилой дом № 20

42

50

39

Жилой дом № 12

79,1

55,6

34,8

Жилой дом № 14

53,24

65

39

Жилой дом № 28

52

68,4

34,8

Жилой дом № 26

52

64

30,4

Магазин № 45

22

68

42,8


Учтя архитектурные особенности расположения зданий место расположение ТП №3 смещаем в точку с координатами Хо факт=61 см, Yо факт=35,5 


Расчеты ЦЭН для остальных ТП проводят аналогично. Расчеты снесены в таблицу 5.


Таблица 5

Номер ТП

Xo расч

Yo расч

Xo факт

Yo факт

ТП № 1

10,2

35,4

8,8

35

ТП № 2

30,8

34,2

30,5

36,5

ТП № 3

60,3

37

61

35,5

4ТП № 4

7,6

12

7,2

13,3

ТП № 5

33

11,4

32,5

9,2

ТП № 6

56,6

12,2

56

14,4


6  Расчет наружной осветительной сети


6.1 Светотехнический расчет


К особенностям выбранного оборудования можно отнести: малые габариты обеспечения отчетливого различия объектов, необходимого для зрительной работы. Рационально распределенный световой поток защищает глаза наблюдателя от чрезмерной яркости. Хорошая защита источников света от механических повреждений и загрязнения обеспечивается выбранной конструкцией светильников.


Проектом предусматривается освещение улиц и фасадов домов микрорайона светильниками РКЦ-250 на железобетонных опорах, и на кронштейнах по фасадам зданий между вторым и третьими этажами. Подключение наружного освещения микрорайона предусматривается от распределительных шкафов типа ВРУ-ВЗ. Щит уличного освещения ЩУО-200 устанавливается в небольших городах и населенных пунктах для автоматического регулирования уличного освещения в вечернее и ночное время, что предусматривает централизованное управление освещением. Щит комплектуется вводными автоматами на 100 А с трансформатором тока и счетчиком и четырьмя групповыми автоматами А3130 на 25 А и 40 А. В ночное время 2/3 светильников отключается.


Пример расчета наружного освещения детского сада № 40 выполненного светильниками РКУ-250.

Для надежной работы осветительной установки и ее экономности большое значение имеет правильный выбор светильников. При выборе светильника, учитывала условия окружающей среды, в которой будет работать светильник, требуемое распределение светового потока в зависимости от назначения и характера отделки помещения и экономичность самого светильника.

Так же при выборе светильника мне пришлось учитывать и технологическое назначение помещения, а, следовательно, и светотехническую классификацию светильников.

Учитывая минимальное присутствие транспорта, принимаем среднюю горизонтальную освещенность покрытия Еср=10 лк, среднюю яркость территории – 0,6 kg/м2 /6/.

Согласно рекомендации типового проекта принимаем схему расположения светильников - однорядную. Ширина пешеходной дорожки по внутреннему периметру детского сада 3 м, длина пролета 35-40 м, высота подвеса светильников – 10 м.

В установках, где нормирована средняя яркость покрытия, за основу расчета берется коэффициент использования по яркости ηL /6/.



По значению ηn определяется необходимый поток Ф΄:


(6.1.1)



где  L – нормирования яркость, kg/м2;

k – коэффициент запаса;

ηL – коэффициент использования по яркости.


k3=1,5  /6/;

Согласно /6/ находится коэффициент использования по яркости ηL=0,035.



Лампа ДРЛ 250 В имеет поток 12500 лм, т.е. может осветить поверхность шириной 12500/2824,5=4,4

Определяется необходимое количество светильников:

К установке принимается 7 светильников через 37 м.



Общая мощность от освещения объекта по формуле (6.2):


                                                                                                    (6.1.2)


где Руд – удельная мощность лампы ДРЛ с учетом потерь в пускорегулирующей аппаратуре, для светильника РКУ-250


Руд=0,27 кВт.


Ро=0,27*7=1,89 кВт


Светотехнический расчет для остальных объектов выполняется аналогично. Данные расчетов сведены в таблицу 6.



 6.2 Электрический расчет осветительной сети



Расчет электрических осветительных сетей производится по минимуму проводникового материала.

В практике для расчета сечений осветительных сетей при условии наименьшего расхода проводникового материала используется формула:


(6.2.1)




где  Мприв – приведенный момент мощности, кВт.м;

С – коэффициент, зависящий от схемы питания и марки материала проводника, С=44 /7/;

ΔU – допустимая потеря напряжения в осветительной сети от источника питания до наиболее удаленной лампы, %. Согласно ПУЭ ΔU=2,5%


Расчет сети освещения рассмотрим на примере уличного освещения по ул. Юных Ленинцев.


Рисунок 1 – Расчетная схема


Определяется момент на участке О-1 по формуле


МО-1=P*l*n,                                                              (6.2.2)


где  P – расчетная мощность лампы, кВт;

l -  расстояние до лампы, м;

n – количество ламп, шт.



МО-1=0,27*80*17=367,2 кВт.м;

Момент на участке 1-2 определяется по формуле:


(6.2.3)



где  l0 – расстояние до первой лампы, м;

l1 – расстояние между лампами, м.




Момент на участке 1-3:




Мприв=М0-1+m1-2+m1-3=367,2+302,4+486=1155,6 кВТ.м;





Принимаем кабель с бумажной изоляцией в алюминиевой оболочке, полихлорвиниловом шланге, марки ААШВу 4х16 мм2, Sсто-1=16 мм2.

Определяются фактические потери напряжения на участке 0-1 по формуле:




Располагаемые потери напряжения на участке 0-1:


ΔUp0-1=ΔU-ΔUф0-1=2,5-0,52=1,98%


Сечения на участке 1-2 и 1-3:





Сеть уличного освещения выполняется воздушной линией, маркой провода А-16, Sст=16мм2.





ΔUф0-1+ΔUф1-2<ΔU


0,52%+0,43%<2,5%


0,95%<2,5%





0,52%+0,7<2,5%


1,22%<2,5%


Проверка выбранных проводников на нагрев током нагрузки.

Определяется ток на участке 0-1:


(6.2.4)



где  Рр0 – расчетная мощность на данном участке, кВт;

Uл – номинальное напряжение сети,В;

Cos φ – коэффициент мощности, Cos φ=0,9 /7/.




Iдоп=90А – для кабеля сечением Sст=16мм2


7,8А<90А








Iдоп=105А – для воздушной линии Sст=16 мм2


3,2А<105A


4,1A<105A


Проверка линий уличного освещения на потерю напряжения проводится для наиболее протяженных и загружаемых участков. Внутридворовая линия освещения пятиэтажных зданий выполняется двухпроводной, проводом марки А-16.


От ТП линии освещения запитываются кабелем марки АВВГ. Также кабелем АВВГ выполняются линии освещения по фасадам девятиэтажных жилых зданий.

Используется кабель четырехжильный с сечением жилы 4-16 мм2.

Результаты расчетов сведены в таблицу 7.


Таблица 7 Электрический расчет освещения


Наименование объекта

Участок

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.