Меню
Поиск



рефераты скачать Электроснабжение 8-го микрорайона города Оренбурга


Сети 10 кВ выполняются с изолированной нейтралью.

         Для таких сетей должны быть предусмотрены устройства релейной защиты от междуфазных и однофазных замыканий на землю.

Для питающих и разделительных сетей 10 кВ в качестве основной служит максимальная токовая защита /8/. От междуфазных замыканий, защиту выполняют в двухфазном исполнении (фазы А и С – в предположении, что трансформаторы тока защит других элементов сети установлены в тех же фазах). Также для кабельной линии 10 кВ устанавливается защита от замыкания на землю. Для защиты кабельной линии применяем защиту на переменном оперативном токе с зависимой выдержкой времени с использованием реле типа РТ-85/2.

В качестве источников переменного оперативного тока служат транс-форматоры тока и трансформаторы напряжения.


14.1 Расчет МТЗ


Расчет МТЗ для защиты питающей кабельной линии на участке п/ст «Шелковая» - РП.


Рисунок 12

Максимальный рабочий ток в линии равен 126,5 А.

Принимаем к установке трансформаторы тока типа ТПЛ-10-150/5 включенных по схеме «неполная звезда».

Находим ток срабатывания защиты:



(13.1.1)



где  Кн – коэффициент надежности, обеспечивающий надежное несрабатывание (отстройку) защиты путем учета погрешности реле с необходимым запасом, для РГ-85/2  кн=1,2;

Кс.з – коэффициент самозапуска, зависит от вида нагрузки, Кс.з=1,2  /8/;

Кв – коэффициент возврата реле, Кв=0,8.


Определяется ток срабатывания реле:


(13.1.2)



где Ксх – коэффициент схемы, для схемы «неполная звезда» Ксх=1;

nтт – коэффициент трансформации трансформатора тока, nтт=30.



Выбираем ближайшую уставку тока срабатывания реле – 8А.

Проверяем чувствительность защиты:


(13.1.3)




Кч>1,5 – для основной зоны


Чувствительность защиты устраивает.

Расчеты МТЗ линий распределительной сети 10 кВ выполняется аналогично. Результаты расчетов снесены в таблицу 34.



Таблица 34

Место
установки защиты

nтт


Схема в нормальном режиме

 

Схема в аварийном режиме

Iр, А

Iсз, А

Iср, А

Кч

Iр, А

Iсз, А

Iср, А

Кч

Ячейка ввода

30

63

106

3,5/4

60,7

126,5

227,7

7,59/8

25,4

Ячейка отходящей линии

30

48,8

87,8

2,9/3

73,3

106,6

191,9

6,4/7

36,8



14.2 Расчет токовой отсечки


Определяется ток срабатывания токовой отсечки:


(13.2.1)


где Кн – коэффициент надежности, учитывающий погрешность в токе срабатывания реле, Кн=1,5 – для реле РТ-85 /13/;


Iс.о=1,5*8530=12795 А.


Определяется ток срабатывания реле:




Определяется коэффициент чувствительности:



Токовая отсечка не проходит по чувствительности.

Для защиты данного участка кабельной линии устанавливается дистанционная защита ДЗ-10.

Сопротивление срабатывания определяется по условию обеспечения требуемого коэффициента чувствительности защиты согласно ПУЭ Кч≥1,5, тогда


(13.2.2)


где Zл1=0,84Ом – сопротивление линии.


Zс.з.=1,5*0,84=1,26 Ом


Рассчитывается коэффициент наклона характеристики α1:



                                                                         (13.2.3)



где tс.з – время срабатывания защиты, tс.з= tс.р+ tс.вв+Δ t1,1+0,03+0,1=1,23 с



Рассчитывается уставка по времени:


tуз=0,9*Zсз*α=0,9*1,26*1,46=1,7 с


tуз=1,7 с – уставка находится в пределах возможной уставки (до 6 с)

Сопротивление срабатывания реле:


(13.2.4)



где nн – коэффициент трансформации трансформаторов напряжения, nн=100.

Zс.р=0378 Ом – находится в пределах допустимых уставок защиты ДЗ-10 (0,1-8 Ом).

Расчеты дистанционных защит линий распределительной сети 10 кВ выполняется аналогично. Результаты расчетов снесены в таблицу 35.


Таблица 35

Режим работы сети

Zлс, Ом

Zс.з., Ом

α1

tуз, с

Zс.р., Ом

nтт

Нормальный режим работы

0,69

1,04

0,77

0,72

0,1

10

Аварийный режим работы

1,18

1,77

0,3

0,48

0,2

10


Уставки дистанционной защиты отходящих линий выставляются для аварийного режима работы (авария на участке 2-3 или 2-6) линии.

15 Охрана труда и техника безопасности


Повышенное внимание к проблеме БЖД во всех средах обитания объясняется целым рядом факторов. Одним из основных направлений обеспечения безопасности человека, помимо экологических аспектов и резкого роста вероятности несчастных случаев в быту, остается профилактика производственного травматизма. Важнейшими причинами, определяющими необходимость совершенствования сложившейся системы обеспечения БЖД на производстве, являются изменение содержания труда и условий его выполнения, что, в свою очередь сказывается на характере производственного травматизма.

При эксплуатации электроустановок возможны повреждения изоляции, нарушения блокировок и другие неисправности, которые могут являться причинами аварий и несчастных случаев с людьми. Во избежание подобных случаев охрана труда на энергообъекте должна строго придерживаться существующих правил и норм безопасности труда.

Энергоснабжающие организации особое внимание уделяют перечню вопросов по «Правилам безопасной эксплуатации электроустановок потребителей» и «Правилам устройства электроустановок» (Приложение_).


15.1 Защитные меры безопасности


По электроопасности помещения отнесены в основном к категории особо опасных.

Защитные меры в электроустановках направлены на предупреждение несчастных случаев. К числу защитных мер относятся:

- применение малых напряжений;


В производственных переносных электроприемниках с целью повышения безопасности при однофазном прикосновении к токоведущим частям применяются напряжения 12В с питанием от трансформатора 220/12 В.

- защитное разделение сетей;


В целях снижения опасности поражения от однофазного прикосновения единую сильноразветвленную сеть с большой емкостью и малым сопротивлением изоляции разделяют через разделительные трансформаторы на ряд небольших сетей такого же напряжения, которые обладают незначительной емкостью и высоким сопротивлением изоляции. Применен трансформатор с Кт=1.

- защита от перехода напряжения с высшей стороны на низшую;


В результате замыкания между обмотками силового трансформатора сеть низшего напряжения может оказаться под напряжением выше 1000 В, на которое изоляция самой сети и подключенного электрооборудования не рассчитано. Для защиты от этой опасности нейтраль с низшей стороны заземляют или соединяют с землей через пробивной предохранитель. В трансформаторе 220/12 В один из проводов вторичной обмотки заземлен.

- контроль изоляции;


Контроль изоляции – измерение ее активного или омического сопротивления с целью обнаружения дефектов и предупреждения замыкания на землю и коротких замыканий. Постоянный контроль изоляции осуществляется вольтметрами в РУ, включенными во вторичную обмотку НАМТ и указательным реле РУ включенным в разомкнутый треугольник.


 Периодический контроль осуществляется с помощью мегаомметра.

- компенсация емкостной составляющей тока замыкания на землю;

Компенсация емкостной составляющей тока замыкания на землю осуществляется с помощью индуктивного сопротивления путем включения катушки индуктивности между нейтралью трансформатора и землей. Эта мера применяется в сетях выше 1000 В для гашения перемещающейся электрической дуги при замыкании на землю и снижения при этом перенапряжений. Одновременно уменьшается ток замыкания на землю. Компенсация необходима, если ток замыкания на землю превышает в сетях напряжением 10кВ – 20 А. В связи с этим в дипломном проекте компенсация не предусмотрена.

- защитное отключение при замыкании на землю на стороне 0,4 кВ;


Защитное отключение при замыкании на землю на стороне 0,4 кВ выполняется с помощью МТЗ, тепловых реле, установленных на автоматических выключателях или плавких вставок предохранителей.


В здании ЗРУ необходимо наличие следующих электрозащитных средств:

а) указатель напряжения – 1 шт.;

б) диэлектрические перчатки – 2 пары;

в) диэлектрические галоши – 2 пары;

г) диэлектрические коврики – 2 шт.;

д) защитные очки – 2 пары;

е) противогаз – 2 шт.;

ж) изолирующие штанги – 1 шт.

- обеспечение недоступности токоведущих частей;


В электроустановках до 1000 В применяются изолированные провода. Другим видом защиты является обеспечение недоступности с помощью ограждения, блокировок или расположения токоведущих частей на недоступной высоте или в недоступном месте. Для защиты от прикосновения к частям нормально или случайно находящимися под напряжением применяется двойная изоляция. Разъединители и масляные выключатели имеют электромагнитную и механическую блокировки.

- зануление;


На стороне 0,4 кВ зануляют металлические корпуса силовых щитов, осветительных щитов, металлические корпуса светильников.

- технические и организационные мероприятия при допуске к ремонту электроустановок;


В процессе эксплуатации электроустановок проводятся планово-предупредительные ремонты, испытания изоляции, наладка проводов и т.п.  До начала ремонтных и наладочных работ проводится ряд технических и организационных мероприятий, обеспечивающих безопасность работ с электроустановками.

Технические мероприятия:

а) Отключение электроэнергии на участке, выделенном для проведения работ, принятие мер против ошибочного включения;

б) установка временных ограждений и вывешивание предупредительных плакатов типа «Не включать – работают люди»;

в) присоединение к земле переносных заземлителей, проверка отсутствия напряжения на токоведущих частях, которые должны быть заземлены;

г) наложение заземления (после проверки отсутствия напряжения);

д) ограждение рабочего места и вывешивание плакатов типа «Работать здесь».

Организационные мероприятия:

а) назначение лиц ответственных за безопасное ведение работ;

б) оформление работы нарядом или распоряжением;

в) оформление допуска к работе;

г) надзор за работающими во время выполнения работы;

д) оформление перерывов в работе, переводов на другое рабочее место;

е) оформление окончания работы.

- пожарные меры, средства и мероприятия;


Противопожарной охране энергообъекта должно уделяться большое внимание. Вопросы пожарной профилактики разрабатываются в институтах, Академии наук, ВУЗах и отраслевых научно-исследовательских институтах.

Закрытые распределительные устройства относятся к категории Г, а помещения щитов управления электроподстанций и подстанций – к категории Д. В качестве меры против распространения начавшегося пожара применяют общие или местные противопожарные преграды, выполненные из несгораемых материалов.

Помещения и электрооборудованием укомплектованы противопожарным оборудованием и приспособлениями:

а) углекислотные огнетушители ОУ-5 – 4 шт.;

б) ящики с песком – 2 комплекта;

в) щит, укомплектованный оборудованием для тушения пожара – 1 шт.

- заземление.


Для обеспечения безопасных условий работы обслуживающего персонала от поражения напряжением прикосновения и шаговым напряжением необходимо все части электрооборудования, нормально не находящиеся под напряжением, но могущие оказаться под таковым при повреждении изоляции, надежно заземлять.

Заземляющее устройство РП принято общим для напряжения 10 и 0,4 кВ. Сопротивление заземляющего устройства должно быть R3≤4 Ом в любое время года. Заземляющее устройство выполнено углубленными заземлителями из полосовой стали, укладываемой в траншею глубиной 0,7 м по периметру распределительного пункта, и вертикальными электродами. Заземляющий контур связан с магистральным заземлением в двух местах. Магистрали заземления выполнены из полосовой стали. В качестве ответвлений от магистралей используются нулевые жилы кабелей и специально прокладываемые стальные полосы.


Расчет искусственного заземления РП 10 кВ с двумя трансформаторами 10/0,4 кВ. Устанавливаем необходимое по /11/ сопротивление R3≤4 Ом. Определяем расчетные удельные сопротивления грунта с учетом повышающих коэффициентов, которые учитывают высыхание почвы летоми промерзание ее зимой. Удельное сопротивление грунта ρ составляет 70 Ом/м.


ρ расч= ρ*k,                                                                                           (14.1)


где  ρ – удельное электрическое сопротивление грунта Ом/м;

k –повышающий коэффициент для вертикальных и горизонтальных заземлителей.


Кв=1,5;

Кг=3,0 /?/


ρ расч.в=70*1,5=105 Ом.м


ρ расч.г=70*3,0=210 Ом.м


Определяем сопротивление растекания одного вертикального электрода. Возьмем стержень диаметром 12 мм, длина стержня 3 м.


 (14.2)

 

где  l – длина прутка,м;

d – диаметр прутка,м;

t – расстояние от поверхности земли до середины электрода,м.


Рисунок 13 – Расстояние от поверхности земли до середины электрода



Определяем примерное число вертикальных заземлителей при принятом коэффициенте использования Ки.в.=0,7 /../.



Вертикальные электроды располагаем по контуру РП. Определяем сопротивление растекания горизонтальных электродов из стали 40х4 мм, приваренных к верхним концам вертикальных электродов. Периметр контура – 50 м


(14.3)




где  Ки.г. – коэффициент использования соединительной полосы в контуре, Ки.г.=0,64 /…/;

l – длина полосы, м;

b – ширина полосы, м;

t – глубина заложения, м.



Уточненное сопротивление вертикальных электродов:



Уточненное число вертикальных электродов:



Проверка сопротивления заземления:



3,9 Ом < 4 Ом

16 Разработка программ-тренажеров противоаварийных тренировок для оперативного персонала Оренбургских городских электрических сетей ОАО «Оренбургэнерго»

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.