Меню
Поиск



рефераты скачать Техногенные месторождения

2.   «Порядок определения размеров ущерба от загрязнения земель химическими веществами», утверждённый им же и председателем комитета РФ по земельным ресурсам и землеустройству Н.В.Комовым 10.11.1993 г.

Принципы решения и подходы к геоэкологическому картированию были сформулированы в работе:

3.   Галицин М.С., Островский Б.Н., Островский Л.А. Требования к геоэкологическим исследованиям и картографированию. Масштаб 1:500 000, 1:200 000, 1:50 000,1:25 000. – М.: ВСЕГИНГЕО, 1990. – 127 с.

Методика геоэкологического картирования изложена в работе:

4.   Вострокнутов Г.А. Временное руководство на проведение геохимических исследований при геоэкологических работах. – Екатеринбург, 1991. – 137 с.

В соответствии с перечисленными нормативно-методическими документами результаты геоэкологического картирования должны быть представлены 2-х листным вариантом карты:

v        фактологическая геоэкологическая карта и

v        карта оценки экологического состояния ГС.

Первый лист включает:

а) карту ландшафтов местности, прилегающей к ТМ, которая служит основой для интерпретации эколого-геохимических карт. Эта карта строится с использованием

-    топографических карт,

-  материалов аэродешифрирования,

-ряда специализированных карт (геологической, геоморфологической, тектонической, металлогенической, растительности, почвенной, гидрогеологической, хозяйственного использования земель и др.)

.Она отражает пространственное расположение и взаимоотношения различных ландшафтов, их компонент (почв, растительности, водотоков и водоёмов, литогенной основы), природных и техногенных факторов, в совокупности определяющих уровень содержания химических элементов в почвогрунтах, в поверхностных и подземных водах, донных осадках и т.д., направления, пути, формы и интенсивность их миграции и вторичной аккумуляции.

При ландшафтно-геохимическом районировании местности, прилегающей к ТМ, типичными являются следующие разновидности ландшафтов:

·      элювиальные (водораздельные);

·      трансэлювиальные (склоновые);

·      транссуперэлювиальные (участки пойм и комплекса низких террас);

·      аквальные (ландшафты проточных и непроточных озёр, рек, водоёмов);

·      супераквальные (ландшафты озёрно-болотных впадин и котловин);

·      техногенно образованные ландшафты (шламохранилища, отстойники, свалки).

б) эколого-геохимические карты, представляющие собой поэлементные карты полей Pb, Cu, Zn, Hg и других элементов, загрязняющих ОС, а так же карту комплексного загрязнения аномалиеобразующими элементами. На подобных картах выделяются области загрязнения отдельными аномалиеобразующими элементами или области загрязнения, обусловленные их суммарным воздействием.

Для построения поэлементных карт вычисляются абсолютные (Са, мг/кг) и относительные содержания элементов для каждой градации поля. Последние получили название «кларки концентраций» (КК) и представляют собой абсолютное содержание, выраженное в единицах кларкового содержания для каждого из элементов

Комплексный показатель геохимического загрязнения аномалиеобразующими элементами (ZC) рассчитывается по формуле

где m – число аномалиеобразующих элементов с КК³1 в i-й пробе.


Легенда к поэлементным картам выглядит примерно так


В легендах к картам комплексного геохимического загрязнения указывается только значение ZC

Картографирование геохимических показателей (КК и ZC) производится по отдельным блокам ГС:

-    почвы,

-    поверхностные и подземные воды,

-    донные осадки и т.д.

Примером таких карт для почвогрунтов может служить рис. 6.

в) карты радиоактивного, нефтяного, бензапиренового (от автотранспорта) и других загрязнений строятся в некоторых экогеологических ситуациях, требующих знания этих видов загрязнения.


Рис. 6. Карты полей распределения цинка (а) и суммарного загрязнения элементами Cu, Zn, Pb, Ag, Hg, As, Cd, Bi, Sn, Cr, Ni, Co, W, Mn, Ti и Mo. (б) почвогрунтов


Для оценки геоэкологической обстановки в зимний период проводится снеговая съёмка. Пробы снега отбираются из шурфов, вскрывающих снеговой покров на всю мощность, однако, исключается нижний слой толщиной около 10 см, чтобы устранить попадание в пробу почвенного материала и влияние обменных реакций на границе двух сред: снег – почва. Снеговая съёмка является эффективным средством оценки пылевого загрязнения территории, а так же загрязнения металлами, переносимыми этой пылью, и установления основных источников пылеобразования и области их действия.

Полевые работы, проводящиеся для получения исходных данных, необходимых для решения задач экогеологического картирования, совмещаются с оценкой техногенных месторождений и сопровождаются площадным опробованием. Сеть и методы пробоотбора регламентируются нормативно-инструктивными материалами геохимических поисков, при этом пункты пробоотбора должны быть расположены на наиболее типичных ландшафтах. Например, при картировании в масштабе 1:50 000 и 1:25 000 обычно пробы отбираются по сети 250´250 метров в пределах населённых пунктов и до 500´500 метров на остальной территории. Пробы отбираются из верхнего (0 – 10 см) почвенного горизонта методом «конверта» со сторонами 10-50 метров и анализируются на 2-3 десятка элементов. В связи с этим важным элементом геоэкологического картирования является аналитическое обеспечение. Предпочтение отдаётся многоэлементным инструментальным методам. На первом этапе исследований для определения круга аномалиеобразующих элементов используется полуколичественный спектральный анализ на 20-30 элементов. Количественный анализ проводится атомно-абсорбционным, рентгенофлуоресцентным, нейтронно-активационным и другими методами, которые выбираются в зависимости от определяемого круга элементов и требуемых пределов обнаружения.

Таким образом, составление первого листа ЭГК, состоящего, как правило, не менее чем из одного-двух десятков информационных слоёв (разнообразных карт), представляющего собой картографическую модель геологической среды (ГС) и происходящих в ней процессов, требует достаточно большого объёма временных и материальных затрат.

На втором листе ЭГК (карта экологической оценки состояния ГС) приводится экспертная оценка воздействия ГС на здоровье человека и условия его обитания.

При составлении оценочной карты разрабатываются критерии оценки экологического состояния ГС в целом и отдельных её компонент. Количество факторов, по которым осуществляется оценка, зависит в каждом конкретном случае от особенностей объекта картирования. Рассмотрим принципы оценки на примере геоэкологического картирования г.Каменска-Уральского и его окрестностей в масштабе 1:25 000. На площади 155 км2 было отобрано и проанализировано 1118 литохимических проб почвогрунтов, 350 проб снега, опробованы колодцы и скважины (45 проб). Выполнено ландшафтно-индикационное дешифрирование аэрофотоснимков масштаба 1:10 000, что явилось основой построения ландшафтной карты и карты техногенного зонирования. Проведена аэрогаммаспектрометрическая съёмка, так как г.Каменск-Уральский входит в зону Восточно-Уральского радиоактивного следа.

В результате выполненного геоэкологического картирования и обработки полученных данных был составлен комплект экологогеохимических карт масштаба 1:25 000, а так же оценочная карта (2-й лист ЭГК).

Оценка была произведена по шести факторам:

1.     Почвогрунты;

2.     Радиоактивность пород;

3.      Экзогенные процессы:

4.      Техногенная нагрузка;

5.     Загрязнение подземных вод особо токсичными веществами: бензапирен, фтор, нефтепродукты;

6.     Показатель защищённости подземных вод от поверхностного загрязнения.

Для каждого фактора был выбран свой показатель, рассчитаны его значения и определен вес этих значений.

Для почвогрунтов в качестве показателя было выбрано суммарное (комплексное) загрязнение ZC и определён условный его вес (0, 1, 3):

·      ZC=(0¸16)   имеет условный вес равный 0,

·      ZC=(16¸32) имеет условный вес равный 1,

·      ZC³32          имеет условный вес равный 3.

При определении радиоактивности пород показателем служила их гамма-активность (мкр/час):

·      (0¸10)   соответствует весу 0,

·      (10¸20) соответствует весу 1,

·      >20        соответствует весу 3.

Из экзогенных процессов рассмотрены следующие:

§       карст,

§       боковая эрозия,

§ оврагообразование,

§ подтопление,

§ заболачивание.

Веса показателей этого фактора, т.е. экзогенных процессов, выбраны следующим образом:

·      отсутствие перечисленных процессов           – 0,

·      наличие одного или двух из этих процессов – 1,

·      появление трёх и более из этих процессов    – 3.

Для веса показателя техногенная нагрузкаиспользованы результаты дешиф-рирования аэрофотоснимков:

·      неизменённые и слабоизменённые ландшафты (лес, луга, болота и т.д.)… – 0,

·      изменённые ландшафты (селитебные зоны, промышленные застройки)…. – 1,

·      образованные ландшафты (шламоотстойники, отвалы, свалки)…………… - 3.

Оценка загрязнения подземных вод первого от поверхности водоносного горизонта была основана на сравнении их загрязнённости наиболее токсичными веществами (бензапирен, нефтепродукты, фтор) относительно ПДК (суммарный показатель):

·      чистые (до 1ПДК)……………… – 0,

·      слабозагрязнённые [(3¸9)ПДК]. – 1,

·      сильнозагрязнённые (>9ПДК)… - 3.

Показатель фактора «защищённость подземных вод» оценивался для первого от поверхности водоносного горизонта. Была рассчитана сумма балов категории защищённости в зависимости от литологического и гранулометрического состава и уровня залегания грунтовых вод. Для определения веса показателя этого фактора была принята следующая градация:

·      хорошо защищённые подземные воды (>15 баллов). – 0,

·      слабозащищённые [(5¸15)баллов]…………………… – 1,

·      незащищённые (<5 баллов)…………………………… - 3.

Фактор, его показатель и условный вес величины этого показателя получили название «критерий оценки». Рассмотренные критерии оценки экологического состояния геологической среды представлены в таблице 9.

Таблица 9.

Критерии оценки экологического состояния ГС.

№ п/п

Фактор

Показатель

Величина показателя или условия

Вес

1

Загрязнение почвогрунтов

Суммарный показатель загрязнения ZC

0 – 16

0

16 – 32

1

>32

3

2

Радиоактивность пород

Гамма-активность, мкр/час

0 – 10

0

10 – 20

1

>20

3

3

Экзогенные процессы

Боковая эрозия,

оврагообразование,

подтопление,

заболачивание

Отсутствие всех

0

Наличие 1-го или 2-х

1

Наличие 2-х и более

3

4

Техногенная нагрузка

Ландшафты:

Неизменённые и слабоизменённые


Лес, луга, болота, поля, сельхоз угодья

0

Изменённые

Селитебные зоны, промышленная застройка

1

Переработанные

Золо-, шлако- и шламоотвалы, карьеры

3

5

Участки загрязнения подземных вод бензапиреном, нефтепродуктами, фтором (суммарный эффект)

Чистые участки

£ 1ПДК

0

Слабое загрязнение

(3¸9)ПДК

1

Сильное загрязнение

>9ПДК

3

6

Защищённость подземных вод

Защищённые

>15 баллов

0

Слабозащищённые

(5¸15)баллов

1

Незащищённые

<15 баллов

3

Оценка экологического состояния ГС производится по сумме баллов, учитывающей вес показателя каждого фактора. Обычно выделяют три градации экологического состояния ГС (см. таблицу 10):

§    относительно благоприятные условия характеризуются суммой весовых баллов. - 0¸2,

§     неблагоприятные……………………………………………………………………… - 3¸4,

§     весьма неблагоприятные………………………………………………………………….³5.


Таблица 10

Оценка экологического состояния геологической среды

Экологическое состояние ГС

Сумма баллов по оценке критериев

Сочетание критериев оценки*

I

Относительно благоприятные условия

0

Все критерии благоприятны

1

1 – неблагоприятный + 5 – благоприятных

2

2 – неблагоприятных + 4 – благоприятных

II

Неблагоприятные условия

3

3 критерия неблагоприятных + 3 – благоприятных;

1 - весьма неблагоприятный + 5 – благоприятных

4

4 – неблагоприятных + 2 – благоприятных

1 – весьма неблагоприятный + 1 – неблагоприятный + 4 –благоприятных

III

Весьма неблагоприятные условия

³5

1 критерий весьма неблагоприятный + 2 – неблагоприятных + 3 – благоприятных;

2 – весьма неблагоприятных при 4-х благоприятных и т.д.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.