Меню
Поиск



рефераты скачать Техногенные месторождения

4.   Изучение малой технологической пробы. Оно направлено на решение технологических вопросов и составление технико-экономического обоснования (ТЭО) промышленного освоения ТМ с разработкой кондиций.

Малая технологическая проба массой от 50 до 100 т отбирается с перспективных участков. Изучение такой пробы позволяет:

§      оценить обогатимость руд, используя полученные данные по её гранулометрическому составу, распределению полезных компонент по классам крупности, контрастности оруденения, определённой химическим или радиометрическим методом, по вещественному и минералогическому составу, по степени окисленности рудных минералов и опытной флотации или гравитации;

§      оценить возможность и перспективы радиометрической порционной сортировки транспортных емкостей (вагонеток, самосвалов, транспортёров и т.д.) и покусковой сепарации при отработке техногенных отложений;

§      разработать рациональную технологическую схему извлечения полезных компонент для данного ТМ с экономическим обоснованием и проектом технологической линии для отработки ТМ.

Общая структурная схема переработки руд с применением радиометрической сортировки и сепарации руд показана на рис.3, но для каждого конкретного месторождения она должна быть уточнена и конкретизирована.

 


































 





Рис.3. Общая принципиальная схема технологии переработки коренных и техногенных руд с применением предварительной концентрации на основе радиометрической сортировки и сепарации.

4.2. Аппаратурно-методическое обеспечение аналитических исследований ТМ

Успех изучения и комплексного использования ТМ в значительной степени зависит от уровня аналитического обеспечения. Очевидно, что от качества определения химического состава многокомпонентных веществ зависит достоверность выводов о полезности и перспективности использования отходов промышленного производства. Многие традиционные аналитические методы далеко не всегда удовлетворяют требованиям практики из-за их трудоёмкости, недостаточной точности и чувствительности. Поэтому закономерен интерес к использованию инструментальных методов анализа, которые позволяют выполнить количественные определения широкого круга элементов в приемлемые сроки в автоматическом или полуавтоматическом режиме с выводом информации на диспетчерский пульт для оперативного управления процессом производства, в память компьютера или непосредственно в соответствующую базу данных.

Особое место при решении перечисленных задач принадлежит ядернофизическим методам:

§      рентгенофлуоресцентному,

§      нейтронно-активационному,

§      гамма-спектрометрическому,

§    эманационному,

§    радиометрическому.

Комплекс этих методов позволяет определять содержания практически всех элементов, представляющих интерес, и исследовать практически все объекты ОС, в том числе воздух, воду, почвы, горные породы, руды, продукты и отходы их переработки и т.д. При этом обеспечивается не только количественная характеристика элементного состава объекта по стабильным изотопам, но и радиационная оценка по активности естественных и искусственных радионуклидов.

Ядернофизические методы и аппаратура для элементного анализа вещества получили в последние 2-3 десятилетия интенсивное развитие и широкое применение. Используя достижения атомной и ядерной физики, полупроводниковой и электронной вычислительной техники, создан к настоящему времени целый ряд анализирующих приборов и разработаны методические основы применения этих методов для решения разнообразных задач геологии, экологии, металлургии, строительства, медицины, пищевой, химической, горнодобывающей и горноперерабатывающей отраслей промышленности и др.

При исследовании таких сложных объектов как ТМ ядернофизические методы обладают целым рядом достоинств по сравнению с традиционными методами анализа вещества:

1.   Возможность анализа техногенных отложений в естественном залегании, т.е. без отбора проб, а также в полевых условиях с помощью передвижных полевых лабораторий.

2.   Высокая экспрессность анализа, длительность которого обычно составляет не более нескольких десятков секунд и редко превышает 10-15 мин, что обеспечивает, с одной стороны, высокую производительность, достигающую десятков и даже сотен тысяч элементоопределений в год, а с другой стороны, решение принципиально новых задач, недоступных традиционным методам анализа. Например, это достоинство в сочетании с первым позволяет осуществить сортировку руд по качеству в транспортных емкостях, корректировку технологического процесса обогащения при анализе пульпы в потоке и т.д.

3.   Высокая экономическая эффективность.

4.   Высокие точность и чувствительность, низкий предел обнаружения, который, например, при НАА достигает для некоторых элементов 10-8-10-10%. Погрешность определений обычно не превышает 10-20% отн. даже при выполнении анализа без отбора проб.

5.   Возможность одновременного многокомпонентного анализа и получение результатов в реальном масштабе времени. При РФА число одновременно определяемых элементов обычно не менее трёх-четырёх, например, Ni, Cu, Zn, Pb, Fe, а при НАА может достигать 30-40 и более.

6.   Анализ является неразрушающим, материал образца полностью сохраняется после завершения измерений.

7.   Низкая трудоёмкость, обусловленная высокой экспрессностью и простотой пробоподготовки или даже полным отсутствием какой-либо подготовки, так как можно анализировать образцы различного размера, формы и вида (штуф, порошок, жидкость, газ) или осуществлять анализ без отбора проб отложений, в естественном их залегании.

8.   Анализ выполняется, как правило, в широком диапазоне концентраций от 10-4-10-8 до 100% при этом без существенного изменения методики и легко поддаётся автоматизации.

9.   Результаты определения содержания элементов в веществе не зависят от типа их химических соединений.

Из перечисленных достоинств ЯФМ следует, что они могут с успехом применяться на всех этапах изучения и утилизации ТМ, начиная от геолого-геофизической съёмки поверхности отложений ТМ, разбуривания перспективных участков и изучения технологических проб и кончая опробованием продуктов обогащения и их переработки, включая автоматические системы управления (АСУ) этими процессами. Эффективное решение этих задач в настоящее время обеспечено соответствующими аппаратурными и методическими разработками (аппаратура типа «Спектроскан», «АР-104», носимые спектрометры типа «Поиск», рентгенорадиометрическая каротажная аппаратура и т.д.; методики многокомпонентного анализа со сцинтилляционными, пропорциональными, полупроводниковыми и кристалл-дифракционными детекторами).

4.3. Метрологическое обеспечение качества полевых и лабораторных анализов состава отложений ТМ

Контроль качества должен осуществляться на всех этапах и при всех видах полевых и лабораторных работ. Аналитические исследования должны проводиться в лабораториях, прошедших аккредитацию в установленном порядке. Контроль качества аналитических работ осуществляется в форме:

1.   Внутреннего (внутрилабораторного);

2.   Внешнего (главным образом в виде межлабораторного);

3.   Геологического контроля.

1. Внутрилабораторный контроль правильности результатов анализа выполняется систематически и обязателен для рядовых анализов, при этом он

§      включает контроль правильности и оценку точности результатов определений с помощью стандартных образцов (СО) и контрольных проб (КП), контроль систематических расхождений результатов, получаемых принципиально различными методами;

§      организуется руководителем аналитического подразделения и выполняется группой контроля;

§      его данные обрабатываются раздельно по методам анализа.

Для контроля правильности и точности анализов используются результаты измерений навесок государственных (ГСО) и отраслевых (ОСО) стандартных образцов, контрольных проб (КП), изготовленных на основе ГСО и ОСО, стандартных образцов предприятия (СОП). Набор стандартных образцов и контрольных проб должен охватывать весь диапазон содержаний определяемого компонента в анализируемых пробах. Навески СО и КП включаются в зашифрованном виде в каждую партию рядовых проб.

2. Внешний межлабораторный контроль осуществляется лабораториями, объединёнными этой процедурой. Они проводят анализ ОСО, СОП и КП по единой методике с последующей обработкой результатов измерений метрологической службой головной организации, которая разрабатывает рекомендации по улучшению качества работ. Внутри и межлабораторный контроль рекомендуется проводить на одних и тех же СО.

3. Геологический контроль предусматривает повторное опробование в количестве 3% от общего объёма отобранных проб.

При необходимости допускается создание и использование контрольных проб по всем опробуемым объектам из типичных для района материалов. Такие пробы готовятся в объёмах, достаточных для обеспечения навесками всех партий проб на весь период работ с обязательным описанием и утверждением методик их изучения.

Исследования, направленные на всестороннее изучение ТМ, выяснения их экономической ценности и экологической безопасности при дальнейшем использовании неразрывно связаны с сертификацией отходов производства. Для этого создаются специальные лаборатории и институты испытаний и сертификации минерального сырья, в том числе и техногенного. Например, институт испытаний и сертификации при Уральской государственной горно-геологической академии (УГГА), выполняющий большой объём работ по оценке качества минерального сырья и метрологическому обеспечению научно-технических исследований и разработок.

5. Формирование банка данных (БД) и мониторинг ТМ

Решение задач, возникающих при переработке ТМ, требует их мониторинга, который является необходимой частью единой технологической цепочки при формировании банка данных по ТМ (БД ТМ).

Целью создания БД является:

1. Представление информации о ТМ в виде, позволяющем

·     отслеживать запасы ценных компонент, содержащихся в этих месторождениях, и

·     управлять опасными отходами на всех этапах обращения с ними, а именно, при их

Ø   образовании,

Ø   накоплении

Ø   транспортировке,

Ø   переработке,

Ø   обезвреживании,

Ø   захоронении;

2. Обеспечение областных, муниципальных и районных органов управления, специалистов, предпринимателей и общественность информацией о ТМ, в том числе,

Ø    об опасных отходах, их перемещении, причинах не использования;

Ø    о прогнозируемых процессах, вызванных их наличием;

Ø    об оценках риска для здоровья человека и возможных путях его снижения;

Ø    о технологиях переработки, а так же

Ø    о затратах, связанных с реализацией мероприятий по их утилизации;

3. Дать ответ на два основные вопроса, обусловленных существованием ТМ:

§      какова эколого-экономическая целесообразность использования ресурсов ТМ в данном районе?

§      каков риск сохранения того или иного ТМ, т.е. как влияет его сохранение на качество других ресурсов (водных, сельскохозяйственных и т.д.)?

В процессе формирования БД ТМ решаются следующие задачи:

1.   Аудит объекта на основе применения оптимального комплекса измерительного оборудования и аппаратуры;

2.   Формирование обновляющихся характеристик ТМ, в том числе по результатам опробования;

3.   Мониторинг ТМ, в том числе слежение за запасами полезных компонент в них;

4.   Повышение достоверности информации о ТМ за счёт комплексирования данных, поступающих из разных источников;

5.   Паспортизация и сертификация ТМ;

6.   Экспертиза способов переработки ТМ и оценка их экономической целесообразности, т.е. поиск рациональных технологий переработки ТМ и выдача рекомендаций по способам использования ТМ;

7.   Оценка существующих и прогнозируемых ущербов, связанных с наличием ТМ;

8.   Поиск потенциальных потребителей продуктов переработки ТМ;

9.   Поиск ТМ, удовлетворяющих определённым требованиям потенциальных потребителей;

10.  Выявление приоритетных проектов переработки ТМ;

11.  Учёт земель, отчуждённых под ТМ;

12.  Формирование учётных документов;

13.  Формирование карт ТМ:

14.  Поддержка БД налогов и штрафных санкций за нарушение экологии и норм природопользования. Например, при  формировании  БД ТМ  топливно-энергетического  комплекса Урала было установлено, что для золоотвалов АО «Свердловэнерго» отсутствуют санитарно-защитные зоны. Это приводит к занижению суммарной площади земельных отводов и суммы соответствующего земельного налога на 58%. Золоотвалы двух электростанций АО «Свердловэнерго» расположены в водоохранных зонах водных объектов, вследствие чего, согласно действующим нормативным документам, платежи за размещение отходов на них должны быть увеличены в 5 раз. Кроме того, не учитывается объём пылевыделения с золоотвалов и отсутствует учёт сброса из золоотвалов оборотных вод с многократным превышением ПДК по таким элементам как Mn, V, F, As, Cu и др. Это, помимо экологических последствий, приводит к занижению соответствующих платежей на сумму не менее 270 млн.руб. в год (в ценах 1997 г.). В целом было установлено, что суммарное занижение платежей за загрязнение ОС, складирование отходов и изъятие земель составило по АО «Свердловэнерго» в 1996 г. 2,33 млрд. рублей.

5.1. Технология формирования банка данных по техногенным месторождениям (БД ТМ)

Технология построения БД ТМ основана на объединении:

§    информационной базы и

§    математических моделей распространения загрязнений в ОС (воздушном и водном бассейнах, почвах, донных отложениях и т.д.) и оценки связанных с этим рисков, которые строятся на основе информационной базы (см. рис.4).




















ция












Рис.4. Структурная схема формирования банка данных по техногенным месторождениям (БД ТМ).


Создание информационной базы является достаточно сложным процессом, требующим огромного объёма информации, основными источниками которой являются:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.