Меню
Поиск



рефераты скачать Разработка источников диффузионного легирования для производства кремниевых солнечных элементов

Диффузия примеси из примесных, предварительно сформированных на поверхности пластины при низкой температуре покрытий позволяет избежать возникновения многих недостатков, присущих методу диффузии в потоке газа-носителя. Метод прост, не требует сложного оборудования, возможно проведение диффузионных процессов в атмосфере воздуха. Именно на исследование поверхностных источников, предназначенных для проведения процесса диффузии примесей в кремний, направлен данный дипломный проект.


1.   ИСТОЧНИКИ ПРИМЕСЕЙ ДЛЯ ДИФФУЗИОННОГО ЛЕГИРОВАНИЯ КРЕМНИЯ И ТЕХНОЛОГИЯ ДИФФУЗИИ ПРИМЕСЕЙ В КРЕМНИЙ


В данном разделе рассматриваются основные известные источники примесей бора и фосфора для проведения диффузии в кремнии. Помимо хорошо известных и нашедших применение в промышленности источников рассматриваются также менее известные источники, интерес к которым возник в связи с разработкой технологии изготовления кремниевых солнечных элементов. Такими источниками являются поверхностные источники диффузии.

Также будут рассмотрены методы проведения диффузии, так как эффективность использования конкретного источника диффузанта в значительной степени определяется методом проведения процесса диффузии.


1.1. Источники примесей для диффузионного легирования кремния


К основным источникам примесей относятся жидкие, газообразные, твердые, твердые планарные источники а также поверхностные источники. Газообразные, жидкие, твердые и твердые планарные источники объединяет то, что при их использовании применяется газовая система. К поверхностным источникам относятся источники на основе простых неорганических соединений, стеклообразные диффузанты, а также легированные окислы. Такие источники наносятся на полупроводниковую пластину кремния различными методами до проведения процесса диффузии. Важной особенностью применения поверхностных источников является возможность проведения процесса диффузии в атмосфере воздуха, что может существенно удешевить технологию производства кремниевых СЭ. Поэтому рассмотрению поверхностных источников уделено большее внимание.



1.1.1. Твердые планарные источники (ТПИ)


При методе диффузии с использованием твердых планарных источников пластины кремния и ТПИ устанавливают в кварцевой кассете параллельно друг другу (рис. 1.1), вводят в реакционную зону диффузионной печи и выдерживают в ней заданное время. Газообразный окисел легирующего элемента, выделяющийся твердым источником, диффундирует к поверхности кремния и взаимодействует с ним с образованием слоя стекла, из которого происходит диффузия примесей вглубь пластины.

  Рис. 1.1. Установка ТПИ и пластин кремния в кварцевой кассете: 1- кварцевая кассета; 2 - ТПИ; 3 - пластины кремния; 4 - пары P2O5.


Параметры диффузионных слоев определяются температурой и временем диффузии, а также давлением газообразного окисла легирующего элемента. Поскольку последний образуется непосредственно в реакционной зоне в результате физико-химических процессов, происходящих в материале источника при нагревании, параметры диффузии практически не зависят от скорости газа-носителя. Таким образом, способ диффузии с использованием ТПИ лишен основных недостатков методов с применением жидких и газообразных источников, а также твердых окислов легирующих элементов и имеет ряд существенных достоинств [4]:

-   высокая производительность за счет большой плотности загрузки пластин кремния и возможность использования всей рабочей зоны диффузионной печи;

-   хорошая воспроизводимость параметров диффузионных слоев благодаря сведению к минимуму числа влияющих на них технологических факторов и простоте управления процессом;  

-   однородность уровня легирования по поверхности, что особенно существенно в связи с тенденцией перехода на пластины большого диаметра;

-   простота используемого технологического оборудования;

-   высокая экономичность.


1.1.1.1.  Источники для диффузии бора


Твердые источники для диффузии бора создают в реакционной зоне пары B2O3,  молекулы которой диффундируют к поверхности кремниевых пластин и взаимодействуют с кремнием:

2B2O3 + 3Si → 4B + 3SiO2.                                               

Из образующегося слоя боросиликатного стекла происходит диффузия бора вглубь кремния.

Основным материалом для изготовления твердых источников бора является нитрид бора (BN). Благодаря физико-химическим и механическим свойствам BN твердые источники на его основе отличаются стабильностью и длительным сроком службы. Перед эксплуатацией ТПИ на основе   BN  окисляют с целью образования на его поверхности тонкого слоя  B2O3, который при температурах диффузии (700 – 1250°С) находится в жидком состоянии. Переход  B2O3 в газовую фазу происходит в результате испарения слоя.

Другим направлением в создании ТПИ бора является использование материалов, содержащих  B2O3  в связанном виде, которая выделяется при нагревании непосредственно в процессе диффузии. Твердые источники такого типа могут применяться без предварительного окисления.

1.1.1.1.1.   ТПИ на основе нитрида бора


Процесс диффузии бора в кремний с использованием ТПИ на основе BN хорошо изучен. Термическое окисление BN в процессе эксплуатации источников производится по мере испарения B2O3. Процесс диффузии может проводиться как в инертной среде (Ar, N2, He), так и в окислительной (5 – 10% кислорода), что препятствует образованию на поверхности пластины кремния труднорастворимой фазы SiB.

Термодинамический анализ системы B2O3 - H2O показал [4], что при температурах диффузии возможно образование в газовой фазе метаборной кислоты:

B2O3 + H2O  →  HBO2.

Равновесие этой реакции очень чувствительно к концентрации H2O в системе. Установлено, что давление HBO2  на несколько порядков превышает  давление B2O3. Поскольку давление H2O в обычной диффузионной системе не ниже 30 Па (чему способствует также высокая гигроскопичность B2O3), основным компонентом газовой фазы является HBO2, а не  B2O3. Повышенное (по сравнению с равновесным давлением B2O3) содержание бора в газовой фазе, а также более высокие значения коэффициента диффузии HBO2 способствуют повышению уровня легирования кремния и возможности создания диффузионных слоев с поверхностной концентрацией, близкой к пределу растворимости. С другой стороны, для получения воспроизводимых результатов диффузии необходим точный контроль содержания влаги в системе, что осложняется гигроскопичностью B2O3.

 Несмотря на разработку усовершенствованных процессов с использованием ТПИ на основе BN необходимость проведения периодического окисления остается их существенным недостатком. 



  1.1.1.1.2.  ТПИ на основе материалов, содержащих B2O3

 

Состав и технологический процесс изготовления ТПИ на основе материалов, содержащих B2O3 довольно сложны. Например, в [4] указывается способ изготовления ТПИ в виде стеклокерамического диска  следующего состава (мол.%): SiO2 – от 2 до 50; Al2O3 – от 15 да 36; MgO – от 15 до 36;    B2O3 – от 10 до 50. Благодаря высокому содержанию B2O3 данный источник можно использовать без предварительного окисления в процессах диффузии при температуре 700 – 1200°С. Наиболее ответственным этапом в технологии изготовления источника является процесс кристаллизации боросиликатного стекла, режим которой зависит от состава источника. При некоторых соотношениях компонентов (особенно при высоком содержании B2O3) не удается достичь полной кристаллизации, вследствие чего заметно снижается теплостойкость источника при высоких температурах эксплуатации.

Повышения теплостойкости стеклокерамических твердых источников с высоким содержанием B2O3  можно достигнуть за счет введения в состав дополнительных окислов.

Например, в [4] приводится технология, когда в  состав нового стеклокерамического источника входят (в мол.%): SiO2 – от  15 до 40, Al2O3 – от  15 до 30, B2O3 – от  20 до 60 и RO – от  5 до 25, где RO – композиция  из следующих окислов: MgO – 0 – 15, CaO – 0 – 10, SrO – 0 – 10, BaO – 0 – 10, La2O3 – 0 – 5, Nb2O3 – 0 – 5, Ta2O3 – 0 – 5. При этом  4 ≥ Al2O3/RO ≥ 1,5. Оптимальный состав стеклокерамического источника (в мол.%): SiO2 – 18 – 40, Al2O3 – 15 – 30, B2O3 – 30 – 60, RO – 5 – 15 при 4 ≥ Al2O3/RO ≥ 2.

Технологический процесс изготовления ТПИ на основе алюмоборосиликатного стекла включает несколько этапов:

-   плавление стекла при температуре 1500 – 1650°С в закрытом платиновом контейнере. Длительность плавления зависит от состава шихты и проводится до момента получения гомогенного стекла;

-   выливание стекла в нагретые графитовые циллиндрические формы порциями, соответствующими толщине 0,5 – 1,25 мм;

-   кристаллизация стекла в несколько стадий: образование кристаллических зародышей; развитие зародышей; кристаллизация.

Механические свойства и теплостойкость стеклокерамических источников определяются соотношением компонентов в исходной шихте. Введение MgO  в сочетании с CaO, SrO и (или) BaO препятствует неконтролируемому расстекловыванию боросиликатного стекла. Добавки La2O3, Nb2O5, Ta2O5 способствуют образованию стекла с высоким содержанием B2O3. Другие окислы улучшают качество стекла, а небольшие количества ZrO2 (TiO2) стимулируют образование зародышей в процессе его кристаллизации. Содержание окислов щелочных металлов (K2O, Na2O, Li2O, Cs2O, Rb2O), а также окислов, обладающих высоким давлением  насыщенных  паров  (PbO, SnO2, CuO), не  должно  превышать 0,5 мол. %, так как их наличие в газовой фазе в процессе диффузии может вызвать ухудшение  электрофизических  характеристик  приборов, полученных  при помощи ТПИ.

В процессе эксплуатации такого ТПИ рекомендуется проведение периодического отжига при температуре диффузии с целью стабилизации его свойств. 


1.1.1.2.  Источники для диффузии фосфора


Твердые планарные источники фосфора при нагревании выделяют пятиокись фосфора  (P2O5) в газовую фазу, молекулы которой диффундируют к поверхности кремниевых пластин и в результате реакции

2P2O5 + 5Si → 5SiO2 + 4P

образуют слой фосфоросиликатного стекла (ФСС), из которого происходит диффузия фосфора в объем кремния.

В качестве ТПИ фосфора используется нитрид фосфора, фосфид кремния или материалы, содержащие P2O5 в связанном виде, которая выделяется при термическом разложении (метафосфат алюминия, пирофосфат кремния).



1.1.1.2.1. ТПИ на основе нитрида фосфора (PN)


Перед началом процесса диффузии пластины нитрида фосфора термически окисляются для образования на поверхности слоя P2O5. Поскольку давление насыщенных паров P2O5 при температурах диффузии имеет высокое значение, за время одного процесса происходит полное ее испарение. В связи с этим операцию окисления необходимо проводить перед каждым процессом.

Показано [4], что нитрид фосфора может использоваться и без предварительного окисления, если в состав газа-носителя ввести некоторое количество кислорода или паров воды, в результате чего происходит образование P2O5 непосредственно в зоне реакции.

ТПИ  на  основе  нитрида  фосфора  уступают  нитриду   бора    по   механическим свойствам и теплостойкости, что обусловлено физико-химическими свойствами  нитрида фосфора :

-   нестабильностью состава и высокой скоростью разложения при сравнительно низких температурах (нитрид фосфора состоит из смеси PN, P4N6, P3N5, а также аморфного PN с мольным соотношением N/P 0,9 – 1,7, начинает разлагаться при температуре 500°С и интенсивно разлагается при 850 – 900°С в инертной среде);

-   высокой гигроскопичностью P2O5, образующейся в окислительной среде при температурах выше 150°С на поверхности PN (наличие слоя H3PO4 является причиной возникновения напряжений, приводящих к деформации твердых источников).

Твердые источники на основе нитрида фосфора не находят широкого применения из-за нестабильности свойств, низкого срока службы и сложности консервации. Технологический процесс с их использованием требует предварительного окисления или проведения диффузии в окислительной среде, что нивелирует основные преимущества твердых источников по сравнению с традиционными способами диффузии.


1.1.1.2.2.  ТПИ на основе метафосфата алюминия


Метафосфат алюминия (Al2O3∙3P2O5) представляет собой соединение с высоким содержанием  пятиокиси  фосфора, которое  разлагается  при температурах 700 – 1200°С :

Al(PO3)3 → AlPO4 + P2O5.

Давление образующейся P2O5  достаточно для проведения диффузии фосфора в кремний в широком интервале температур.

В [4] указан способ получения ТПИ фосфора на основе стеклокерамического метафосфата алюминия. Источник изготавливается в виде диска по технологии, включающей следующие этапы:

1.   Плавление стекла Al2O3∙3P2O5 при температуре 1500°С в закрытом контейнере при избыточном давлении P2O5. По окончании плавления стекло содержит 19 – 30 масс.% Al2O3 и 70 – 81 масс.% P2O5;

2.   Выливание стекла в нагретую графитовую форму;

3.   Кристаллизация стекла;

4.   Разрезание слитка на диски толщиной 1 мм.

Диски на основе стеклокерамического метафосфата алюминия обладают достаточной теплостойкостью, позволяющей их эксплуатацию до температур 1150 – 1200°С (при диаметре 38 мм). Твердый планарный источник на основе метафосфата алюминия имеет ряд преимуществ по сравнению с ранее известными. Высокое содержание активной пятиокиси фосфора (до 50 масс.%) обеспечивает его длительный срок службы (несколько сотен часов).

Основным недостатком стеклокерамического источника на основе Al(PO3)3 является низкая пористость, так как скорость выделения P2O5 изменяется в процессе работы вследствие образования на его поверхности слоя AlPO4, который затрудняет выход пятиокиси фосфора из более глубоких слоев источника. Это приводит к изменению параметров источника в процессе его эксплуатации.


1.1.1.2.3.  ТПИ на основе пирофосфата кремния


Для создания твердых планарных источников фосфора можно также использовать пирофосфат кремния [4]. Термическое разложение SiP2O7 происходит в соответствии с уравнением реакции:

SiP2O7  →  P2O5 + SiO2.

Равновесное давление P2O5 при температурах 950 – 1100°С над пирофосфатом кремния значительно выше, чем над метафосфатом алюминия. Из-за высокой скорости разложения пирофосфата кремния при температурах диффузии в чистом виде для создания ТПИ он не используется. Для уменьшения скорости разложения, увеличения механической прочности и повышения срока службы в состав источников вводят инертный пассивирующий материал. Первоначально в качестве  инертного материала использовали двуокись циркония ZrO2. Смесь порошков ZrO2 и SiP2O7 подвергали горячему прессованию при температурах 800 – 1500°С. Полученные циллиндрические бруски разрезали на пластины толщиной          0,5 – 1 мм. Недостатком таких источников является протекание реакции:

ZrO2 + P2O5  →  ZrP2O7,

что приводит к связыванию части P2O5 в виде пирофосфата циркония, который представляет  собой  термически  стабильное  соединение  до  температур  порядка 1400°С. В результате снижается срок службы источников.





1.1.2. Жидкие источники


Суть метода диффузии из жидких источников заключается в следующем. Пластины кремния помещают в кварцевую трубу, находящуюся внутри нагретой однозонной печи. Через трубу пропускается поток газа-носителя, чаще всего азота или аргона, к которому добавляется примесь источника диффузанта, находящегося при обычных условиях в жидком состоянии. Кроме того, в газовую смесь на все время или на часть времени процесса добавляется некоторое количество кислорода. Метод в основном используется для диффузии бора и фосфора, причем в качестве источников диффузантов применяют такие вещества, как PCl3, POCl3, PBr3, BBr3 и борнометиловый эфир.

Рис. 1.2. Диффузия в потоке газа-носителя из жидкого источника: 1 – однозонная печь; 2 – жидкий источник.


Жидкие источники позволяют двуступенчато разбавлять пары потоком газа, проходящим через дозатор, и общим потоком, идущим непосредственно в кварцевую трубу. Схема диффузии при использовании жидкого источника диффузии представлена на рис. 1.2 [5].

Рассмотрим диффузию из жидкого источника, когда в качестве жидкого источника используется POCl3 [6]. Через  барботер  с  POCl3   может  пропускаться или  азот, или   кислород, или  их смесь. Двухступенчатое разбавление обеспечивает возможность получения малых концентраций POCl3 в газовой смеси. Температура POCl3 может меняться в интервале 15 – 40ºС (удобнее всего поддерживать ее около 20ºС). Полный поток газа составляет      2 л/мин. Если пропускать через печь POCl3 в токе инертного газа, то в результате происходящих на поверхности кремния реакций будут, по-видимому, получаться P4O10, PCl3 и свободный Cl2, который будет травить поверхность кремния. Это обычно и наблюдается в отсутствие кислорода. При достаточном содержании  кислорода  в  газовой  смеси  травление  будет  приостанавливаться растущей  пленкой окисла :                                        

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.