Меню
Поиск



рефераты скачать Применение колтюбинговой технологии в бурении



Рис. 13. Эпюра изгибающих моментов М(j) в поперечном сечении гибкой трубы, взаимодействующей с плашками при Rтр.н < Rп:

1 – сосредоточенная сила; угол охвата трубы плашкой a, градус: 2 – 20, 3 – 40, 4 – 60, 5 – 80; j – текущая координата


Рис. 14. Эпюра изгибающих моментов М(j) в поперечном сечении гибкой трубы, взаимодействующей с плашками при Rтр.н > Rп:

1 – сосредоточенная сила; угловая координата точек приложения сил a, градус: 2 – 20, 3 – 30, 4 – 40, 5 – 60, 6 – 80;    j – текущая координата


Из приведенных данных следует, что наиболее предпочтительным случаем при взаимодействии трубы и плашек является приложение распределенной нагрузки. Вместе с тем, при действии двух сосредоточенных сил деформация поперечного сечения трубы приводит к увеличению площади контакта и в итоге к передаче усилия по всей площади плашки. Картина деформации поперечного сечения при приложении двух пар сосредоточенных сил является более сложной. При угле a   40 ¸ 50° они могут вызвать сплющивание трубы. Но поскольку подобные значения углов в плашках не предусмотрены, данный вопрос как представляющий сугубо теоретический интерес рассмотрен не будет.

Исходя из полученных зависимостей ,может быть вычислен изгибающий момент и определены максималь­ные напряжения, возникающие при обжатии трубы плаш­ками.

Рассмотрим пример расчета напряжений в предположении, что отсутствует давление технологической жидкости во внутренней полости трубы и на нее нет осевой нагрузки.

Под действием изгибающего момента в продольном сечении гибкой трубы возникают нормальные напряжения, максимальное значение которых определяется следующим образом:

sx = Mx1/Wx1,

где Mx1 = KнагрP1R – максимальное значение изгибающего мо­мента, действующего в поперечном сечении, в расчете на единицу длины трубы (значения максимальных моментов и соответствующих коэффициентов нагружения Kнагр приведены выше); Wx1 = bтрd2тр/6 – момент сопротивления изгибу поперечного сечения трубы, имеющей длину, равную единице (где dтр – толщина стенки трубы; bтр – ширина ее поперечного сечения, в рассматриваемом случае b = 1).

Моменты сопротивления изгибу для труб различной толщины имеют следующие значения:


Толщина стенки трубы, dтр, мм .......................


2


2,5


3


3,5


4


5

Момент сопротивления изгибу, мм3 ............


0,667


1,667


1,500


2,040


2,667


4,167


Максимальное усилие, приложенное к единице длины трубы, ограничено и определяется максимально допустимыми нормальными напряжениями, возникающими при изгибе за пределом упругости при образовании пластического шарнира. При расчете деталей транспортера и режимов его работы максимальное сжимающее усилие может быть установлено из условия равенства этих напряжений пределу текучести:

sx = sт = Mx1/Wx1 = KнагрP1R/Wx1.

Отсюда величина сжимающей силы P1, особенности приложения которой к трубе характеризует коэффициент Kнагр, может быть найдена из выражения

P1 = Wx1sт/KнагрR.

Значения максимальной нагрузки для наиболее распространенных размеров труб приведены ниже:


Параметры трубы, мм:







наружный диаметр dтр.н

25

25

33

33

44

44

толщина стенки dтр ..........

2

2

3

3

3,5

3,5

Предел текучести sт, МПа

480

700

480

700

480

700

Максимальная сжи­мающая сила Р1, Н/мм:







сосредоточенная ...............

87,5

127,5

151

220,2

153,9

224,4

распределенная .................

222,7

324

383,4

559,2

390

570

Примечание. Предел текучести 480 МПа соответствует малоуглеродистым сталям, а 700 МПа – низколегированным.


Приведенные значения максимальной сжимающей силы P1 служат исходными данными при определении максимального тягового усилия инжектора.


Определение тягового усилия инжектора


Максимальное тяговое усилие Qmax, обеспечиваемое транспортером без проскальзывания плашек относительно гибкой трубы, определяется силой трения, действующей между ними, т.е. Qmax = Fтр.

При плоских поверхностях величину силы трения вычисляют по известной формуле

Fтр = kP,

где k – коэффициент трения между плашкой и гибкой трубой; P – усилие прижима плашки к трубе.

Однако использовать приведенную зависимость нельзя, так как контактная поверхность имеет цилиндрическую форму.

Определим силу трения, возникающую между трубой и плашкой на цилиндрической поверхности контакта (рис.15).

Элементарная сила q, приложенная к площадке dl длиной, равной единице, может быть разложена на две составляющие: нормальную к поверхности трубы qn(j) и распирающую плашку qr(j). Сила qn(j) обеспечивает создание силы трения dFтр, действующей в плоскости, перпендикулярной рассматриваемому сечению. Сила qr(j) должна быть учтена при прочностном расчете плашки.

Для площадки с координатой j можно записать

q(j) = q/сosj.

Сила трения, создаваемая на этой площадке,

dFтр = (q/сosj)kdl.


Сила трения, возникающая на поверхности трубы единичной длины, соответствующая углу a охвата ее плашкой,

Так как dl = Rтр.нdj, то при подстановке получаем

Для одной плашки высотой h это выражение будет иметь следующий вид:

                                               Fтр1 =q/сosj)kRтр.нhdj.

      В результате преобразований получим

Fтр1 = qkRтр.нh1/сosj)dj = qkRтр.нh[(1/сosj) + tgj].

После подстановки значений угла получим выражение для силы трения, создаваемой плашкой на контактной поверхности при изменении угла j от нуля до максимума,

Fтр1 = qkRтр.нhln[(1/сosjmax) + tgjmax],

где jmax – половина угла охвата трубы плашкой.

Так как угол охвата трубы плашкой составляет 2jmax, то вы­ражение будет иметь вид

Fтр1 = 2qkRтр.нhln[(1/сosjmax) + tgjmax].

В практических расчетах удобнее вычислять силу трения, обеспечиваемую парой плашек, прижатых к трубе с двух противоположных сторон. В результате значение силы трения должно быть удвоено:


Fтр1 = 4qkRтр.нhln[(1/сosjmax) + tgjmax].


Величина распределенной нагрузки q может быть определена как

q = P/hb = P/Rтр.нh2sinjmax.

После подстановки в получим

Fтр1 = 2Pkln[(1/сosjmax) + tgjmax]/sinjmax.

Таким образом, криволинейный профиль плашки в формуле для определения силы трения может быть учтен с помощью коэффициента

hф = ln[(1/сosjmax) + tgjmax]/sinjmax,

а окончательная формула примет традиционный вид:

Fтр1 = 2Pkhф.

Для упрощения расчетов можно пользоваться величиной коэффициента hф, зависящей только от угла охвата трубы плашкой jmax:


Угол захвата трубы плашкой jmax, градус .............................................................


20


30


40


50

Коэффициент hф .......................................

1,042

1,099

1,187

1,320


Угол захвата трубы плашкой jmax, градус .............................................................

60

70

80

85

Коэффициент hф .......................................

1,521

1,847

2,474

3,143


Максимальное тяговое усилие Qmax, создаваемое транспортером при перемещении трубы, определяется суммой сил трения, создаваемых плашками, находящимися в контакте с поверхностью трубы, т.е.

Qmax = SFтрn,

где n – число пар плашек.

Если усилие прижима плашек к трубе одинаковое, то максимальное тяговое усилие может быть рассчитано по формуле

Qmax = 2Pmaxkn.

Величина максимального усилия, прилагаемого к плашке, Pmax может быть определена исходя из условия прочности трубы, сжатой плашками.

При проектировании устройств для перемещения трубы приходится решать обратную задачу – определять необходимое число пар плашек, которые могут обеспечить заданное тяговое усилие.

Алгоритм решения этой задачи следующий:

а) исходя из геометрических размеров поперечного сечения трубы и прочностных свойств материала, из которого она изготовлена, определяют максимально допустимое усилие [Pmax], которое может быть приложено к плашкам;

б) по заданной величине тягового усилия транспортера Qmax с учетом коэффициента трения k и предполагаемого угла охвата плашками трубы устанавливают необходимое число пар плашек, которые должны быть прижаты к трубе одновременно.

Решение задачи усложнено тем, что транспортер будут использовать с колоннами гибких труб, изготовленных из материалов с различными прочностными характеристиками, поэтому его конструкция должна обеспечивать создание номинального тягового усилия для различных колонн.

Для удовлетворения этого условия число плашек следует определять, исходя из условий работы с трубой, имеющей минимальные прочностные характеристики, а размеры гидравлических цилиндров и давления в них, – исходя из максимальных значений этих характеристик:

n = Qmax/2Pmaxsminkhф.


Расчет режима работы

гидропривода транспортера

Две  бесконечные цепи транспортера приводятся в действие гидромоторами типа 3102.112 через планетарные редукторы. Технические характеристики гидромотора следующие:

Объем рабочей камеры, см3 .................................................................................

112

Номинальная частота вращения вала, об/мин ............................................

1500

Номинальный расход жидкости, л/мин ........................................................

175

Номинальный перепад давления для гидромотора, МПа .......................

20

Максимальное давление на входе в гидромотор, МПа ............................

35

Крутящий момент гидромотора, Н:

номинальный ........................................................................................................

страгивания ...........................................................................................................


342

258

Номинальная мощность насоса, кВт ...............................................................

58,4

Коэффициент подачи для насоса в номинальном режиме, %, не ме­нее ..................................................................................................................................


95

Гидромеханический КПД для гидромотора в номинальном режиме, %, не менее .................................................................................................................


96

КПД в номинальном режиме, %, не менее:

насоса ......................................................................................................................

гидромотора ..........................................................................................................


91

92

Масса без рабочей жидкости, кг, не более ....................................................

31


Усилие, развиваемое транспортером, при работе двух гидромоторов при их номинальном давлении

P = 2Мкр.ном/R,

где Мкр.ном – крутящий момент на валу каждой из ведущих звездочек транспортера; R – радиус звездочки (R = 114 мм).

Момент

Мкр.ном = Мг.м.номi,

где Мг.м.ном – крутящий момент, развиваемый гидромотором, при номинальном давлении, i – передаточное число редуктора, установленного между гидромотором и звездочкой (i = 24).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.