Меню
Поиск



рефераты скачать Схемотехника аналоговых электронных устройств


Здесь ФИ - фазоинверсный каскад предварительного усиления (драйвер), УМ - двухтактный каскад усиления мощности.

         В качестве драйвера может использоваться каскад с разделенной нагрузкой (рисунок 4.8).


Можно  показать, что при , .

         Несмотря на такие достоинства, как простота и малые частотные и нелинейные искажения, каскад с разделенной нагрузкой находит ограниченное применение из-за малого  и разных , что приводит к несимметричности АЧХ выходов в областях ВЧ и НЧ.

         Гораздо чаще применяются ФИ на основе дифференциального каскада (ДК) (рисунок 4.9).


         ДК будут рассмотрены далее, пока же отметим,  что через будет протекать удвоенный ток покоя транзисторов VT1 и VT2 и, следовательно, номинал резистора  в схеме фазоинверсного каскада уменьшается вдвое по сравнению с расчетом каскада с ОЭ.

         При рассмотрении, например, левой половины фазоинверсного каскада видно, что в цепи эмиттера транзистора VT1 (включенного с ОЭ) присутствует   и параллельно ему входное сопротивление транзистора VT2 (включенного с ОБ),  .

         Обычно берут (или заменяют  эквивалентом высокоомного сопротивления в виде источника стабильного тока, который будет рассмотрен в дальнейшем вместе с ДК), поэтому можно подставить  вместо  в выражение для глубины ПООСТ (см. подраздел 3.2) :

         Следовательно, можно считать, что в фазоинверсном каскаде присутствует ПООСТ с глубиной, равной двум. Принимая во внимание, что относительно эмиттера VT2 транзистор VT1 включен по схеме с ОК, нетрудно показать, что при идентичности параметров транзисторов , т.е. коэффициенты передачи по напряжению плеч фазоинверсного каскада на основе ДК равны половине коэффициента передачи каскада с ОЭ.

         Довольно широко применяется ФИ на комплиментарных транзисторах, вариант схемы которого представлен на рисунке 4.10.



         Использование комплиментарной пары транзисторов VT1 и VT2, имеющих разную проводимость, но одинаковые параметры (например, КТ315-КТ361, КТ502-КТ503, КТ814-КТ815 и др.) позволяет инвертировать фазу входного сигнала на 180° на первом выходе.

         Кроме рассмотренных выше каскадов, в качестве фазоинверсных также применяются каскады с ОЭ, включенные согласно структурной схемы, показанной на рисунке 4.11. Отметим, что ФИ, построенный по такой схеме, имеет разбаланс АЧХ и ФЧХ выходов.







         В качестве выходного каскада УМ, подключаемого к выходам ФИ, может использоваться каскад, одна из разновидностей которого приведена на рисунке 4.12.



         В данном каскаде возможно использование режимов классов В, АВ, С. К достоинствам каскада следует отнести возможность использования мощных транзисторов одного типа проводимости. При использовании двухполярного источника питания возможно непосредственное подключение нагрузки, что позволяет обойтись без разделительного конденсатора на выходе, который обычно имеет большую емкость и габариты и, следовательно, труднореализуем в микроисполнении.

         В целом,  в УМ, выполненных по структурной схеме, представленной на рисунке 4.7, не достижим высокий КПД вследствие необходимости применения в ФИ  режима класса А.

         Гораздо лучшими параметрами обладают двухтактные бестрансформаторные УМ, выполненные на комплиментарных транзисторах. Такие УМ принято называть бустерами. Различают бустеры напряжения и тока. Поскольку усиление напряжения обычно осуществляется предварительными каскадами многокаскадного усилителя, а нагрузка УМ, как правило, низкоомная, то наибольшее распространение получили выходные каскады в виде бустера тока.

         На рисунке 4.13 приведена  схема простейшего варианта бустера тока класса В на комплиментарных транзисторах и двухполярным питанием.



         При подаче на вход бустера положительной полуволны входного гармонического сигнала открывается транзистор VT1 и через нагрузку потечет ток.   При подаче на вход бустера отрицательной полуволны входного гармонического сигнала открывается транзистор VT2 и через нагрузку потечет ток в противоположном направлении. Таким образом, на  будет формироваться выходной сигнал.

         Включение транзисторов с ОК позволяет получить малое выходное сопротивление, что необходимо для согласования с низкоомной нагрузкой для передачи в нее максимальной выходной мощности. Большое входное сопротивление позволяет хорошо согласовать каскад с предварительным усилителем напряжения. За счет 100% ПООСН .

         Благодаря использованию двухполярного источника питания возможна гальваническая связь каскада с нагрузкой, что делает возможным применение токовых бустеров в усилителях постоянного тока. Кроме того, это обстоятельство весьма благоприятно при реализации бустера в виде ИМС.

         Существенным недостатком рассматриваемого бустера является большие НИ (), что и ограничивает его практическое использование. Свободным от этого недостатка является токовый бустер класса АВ, схема которого приведена на рисунке 4.14.


         Начальные токи покоя баз транзисторов здесь задаются с помощью резисторов  и , а также диодов  и . При интегральном исполнении в качестве диодов используются транзисторы в диодном включении. Напомним, что падение напряжения на прямосмещенном диоде , а в кремниевых ИМС с помощью диодов осуществляется параметрическая термостабилизация (см. подраздел 2.6). Сопротивление  вводится для лучшего согласования с предыдущим каскадом усилителя.

         При положительной полуволне входного гармонического сигнала диод  подзапирается и на базе  будет "отслеживаться входной потенциал, что приведет к его отпиранию и формированию на сопротивлении нагрузки положительной полуволны выходного гармонического сигнала. При отрицательной полуволне входного гармонического сигнала работает  и , и на нагрузке формируется отрицательная полуволна выходного гармонического сигнала.

         Для увеличения выходной мощности могут быть использованы бустеры на составных транзисторах, включенных по схеме Дарлингтона (рисунок 4.15), у которой коэффициент передачи по току равен произведению коэффициентов передачи тока базы транзисторов  и  причем возможна однокристальная реализация данной структуры, например, составной транзистор КТ829.



         Из полевых транзисторов  в УМ более пригодны МОП- транзисторы с индуцированными каналами n- и p- типа, имеющими такой же характер смещения в цепи затвор-исток, как и у биполярных, но имеющих более линейную входную ВАХ, приводящую к меньшему уровню ВАХ. Схема УМ на ПТ указанного типа приведена на рисунке 4.16.



 В данном каскаде введена положительная ОС по питанию путем включения резистора  последовательно с . В точку a выходное напряжение подается через конденсатор  и служит "вольтодобавкой", увеличивающей напряжение питания предоконечного каскада в тот полупериод, в который ток транзистора  уменьшается. Это позволяет снять с него достаточную амплитуду напряжения, необходимую для управления оконечным истоковым повторителем, повышает выходную мощность и КПД усилителя. Аналогичная схема "вольтодобавки" применяется и в УМ на БТ.

         Широкое применение находят УМ, у которых в качестве предварительных каскадов применены операционные усилители. На рисунках 4.17а,б приведены соответствующие схемы УМ режимов класса В и АВ.



Данные примеры иллюстрируют еще одно направление в разработке УМ - применение общей ООС, служащей, в частности, для снижения уровня НИ.

         Более подробное описание схем УМ содержится в [1,9].








5. УСИЛИТЕЛИ ПОСТОЯННОГО ТОКА    


5.1. Общие сведения


Усилителями постоянного тока (УПТ) называются устройства, предназначенные для усиления медленно изменяющихся сигналов вплоть до нулевой частоты. На рисунке 5.1 приведена АЧХ УПТ.



Для осуществления передачи сигналов частот, близких к нулю, в УПТ используется непосредственная (гальваническая) связь между каскадами. Однако такая связь приводит к необходимости решения специфических задач:

¨ согласование потенциальных уровней в соседних каскадах;

¨ уменьшения дрейфа (нестабильности) выходного уровня напряжения или тока.


5.2. Способы построения УПТ


Основная проблема, с которой сталкиваются разработчики УПТ, является дрейф нуля. Дрейфом нуля (нулевого уровня) называется самопроизвольное отклонение напряжения или тока на выходе УПТ от начального значения. Поскольку дрейф нуля наблюдается и при отсутствии сигнала на входе на входе УПТ, то его невозможно отличить от истинного сигнала.

К физическим причинам, вызывающим дрейф нуля в УПТ, относятся:

¨ нестабильность источников питания;

¨ временная нестабильность ("старение") параметров транзисторов и резисторов;

¨ температурная нестабильность параметров транзисторов и резисторов;

¨ низкочастотные шумы;

¨ помехи и наводки.

Наибольшую нестабильность вносит температурный фактор. Положение усугубляется наличием гальванической связи между каскадами, хорошо передающей медленные изменения сигнала, что приводит к эффекту каскадирования температурных нестабильностей каскадов от входа к выходу.

Поскольку температурные изменения параметров усилительных элементов имеют закономерный характер (см. подразделы 2.2 и 2.10), то они могут быть в некоторой степени скомпенсированы теми же методами, что и в усилителях гармонических сигналов.

Абсолютным дрейфом нуля  называется максимальное самопроизвольное отклонение выходного напряжения УПТ при замкнутом входе за определенный промежуток времени. Качество УПТ оценивают по напряжению дрейфа нуля, приведенного к входу усилителя:

.

Приведенный к входу дрейф нуля эквивалентен ложному входному сигналу, он ограничивает минимальный входной сигнал, т.е. определяет чувствительность УПТ.

С целью снижения дрейфа нуля в УПТ используются:

¨ глубокие ООС;

¨ термокомпенсирующие элементы;

¨ преобразование постоянного тока в переменный, его усиление и последующее детектирование;

¨ построение УПТ по балансной схеме.

УПТ прямого усиления, по сути, являются обычными многокаскадными усилителями с непосредственной связью. В качестве УПТ может использоваться усилитель, схема которого приведена на рисунке 3.4.

В этом усилителе резисторы ,  и , помимо создания местных и общих цепей ООС, обеспечивают необходимое напряжение смещения в своих каскадах. В многокаскадном УПТ можно обеспечить требуемый режим транзисторов по постоянному току путем последовательного повышения потенциалов эмиттеров от входа к выходу, что обусловлено непосредственной межкаскадной связью "коллектор-эмиттер", потенциалы коллекторов тоже возрастают от входа к выходу. Возможно обеспечение режима каскадов УПТ путем уменьшения  от входа к выходу, однако в том и другом случае следствием будет уменьшение коэффициента усиления УПТ.

В многокаскадных УПТ прямого усиления может происходить частичная компенсация дрейфа нуля. Так, положительное приращение тока коллектора первого транзистора вызовет отрицательное приращение тока базы и, следовательно, тока коллектора второго транзистора. На практике полная компенсация дрейфа нуля не достижима даже для одной температурной точки, тем не менее, в УПТ с четным числом каскадов наблюдается его снижение.

В связи с тем, что данный УПТ имеет однополярное питание, на его входе и выходе присутствует некоторый постоянный потенциал, что не позволяет подключать низкоомные источник сигнала и нагрузку непосредственно между ними и общим проводом. В этом случае используется мостовая схема с включением  и  в диагонали входного и выходного мостов (рисунок 5.2).


Для расчета частотных и временных характеристик УПТ с прямым усилением можно использовать материалы подразделов 2.5 и 3.3, а также подраздела 2.9 в случае построения УПТ на ПТ.

Для целей согласования потенциалов используют транзисторы различной проводимости, для лучшей температурной компенсации применяют диоды и стабилитроны. Применение двухполярного источника питания позволяет непосредственно подключать источник сигнала и нагрузку к УПТ, т.к. в этом случае обеспечены нулевые потенциалы на его входе и выходе. Указанные меры реализованы в схеме УПТ, приведенной на рисунке 5.3.


УПТ с прямым усилением на основе непосредственной связи между каскадами и глубокими ООС позволяют получить  при  порядка десятков милливольт. В таких УПТ возникает проблема устранения паразитной ОС по цепям питания, ибо не представляется возможным применение обычных фильтров.

УПТ прямого усиления имеют большой температурный дрейф (составляет единицы милливольт на градус). Кроме температурного дрейфа в таких УПТ существенное влияние оказывают временной дрейф, нестабильность источников питания и низкочастотные шумы.

Отмеченные недостатки в значительной мере преодолеваются в УПТ с преобразованием (модуляцией) сигнала. На рисунке 5.4 приведена структурная схема УПТ с преобразованием постоянного тока в переменный и даны эпюры напряжений, поясняющие принцип его работы.

Входной сигнал постоянного напряжения  преобразуется в пропорциональный ему сигнал переменного напряжения с помощью модулятора М, потом усиливается обычным усилителем гармонических сигналов У, а затем демодулятором ДМ преобразуется в сигнал постоянного напряжения . Поскольку в усилителях переменного тока дрейф нуля не передается от каскада к каскаду (из-за наличия разделительных емкостей между каскадами), то в данном УПТ реализуется минимальный дрейф нуля.



В качестве модулятора можно использовать управляемые ключевые схемы, выполненные обычно на ПТ. Простейшим демодулятором является обычный двухполупериодный выпрямитель с фильтром на выходе. Следует заметить, что существует большое многообразие схемных решений как модуляторов, так и демодуляторов, рассмотрение которых не позволяет ограниченный объем данного пособия.

В качестве недостатков УПТ с преобразованием сигнала следует отнести проблему реализации модуляторов малого уровня входного сигнала и повышенную сложность схемы.

Достичь существенного улучшения электрических, эксплуатационных и массогабаритных показателей УПТ можно за счет их построения на основе балансных схем.


5.3. Дифференциальные усилители


В настоящее время наибольшее распространение получили УПТ на основе дифференциальных (параллельно-балансных или разностных) каскадов. Такие усилители просто реализуются в виде монолитных ИМС и широко выпускаются промышленностью (КТ118УД, КР198УТ1 и др.). На рисунке 5.5 приведена принципиальная схема простейшего варианта дифференциального усилителя (ДУ) на БТ.


Любой ДУ выполняется по принципу сбалансированного моста, два плеча которого образованы резисторами  и , а два других - транзисторами  и . Сопротивление нагрузки  включено в диагональ моста. Резисторы цепи ПООСТ  и  обычно невелики или вообще отсутствуют, поэтому можно считать, что резистор  подключен к эмиттерам транзисторов.

Двухполярное питание позволяет обойтись на входах (выходах) ДУ без мостовых схем за счет снижения потенциалов баз (коллекторов) до потенциала общей шины.

Рассмотрим работу ДУ для основного рабочего режима - дифференциального. За счет действия  транзистор  приоткрывается, и его ток эмиттера получает приращение , а за счет действия  транзистор  призакрывается, и ток его эмиттера получает отрицательное приращение . Следовательно, результирующее приращение тока в цепи резистора  при идеально симметричных плечах близко к нулю и, следовательно, ООС для дифференциального сигнала отсутствует.

При анализе ДУ выделяют два плеча, представляющие собой каскады с ОЭ, в общую цепь эмиттеров транзисторов которых включен общий резистор , которым и задается их общий ток. В связи с этим представляется возможным при расчете частотных и временных характеристик ДУ пользоваться соотношениями подразделов 2.5 и 2.12 с учетом замечаний, приведенных в подразделе 4.4. Например, коэффициент усиления дифференциального сигнала  будет равен в случае симметрии плеч (см. подраздел 4.4) , т.е. дифференциальный коэффициент усиления равен коэффициенту усиления каскада с ОЭ.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.