Меню
Поиск



рефераты скачать Системы связи

Установление стандартов и контроль характеристик линий пе­редачи осуществляются различными государственными или между­народными органами (в зависимости от характера линий: спутнико­вая телеметрия — международными соглашениями, промышленная телеметрия — органами государственного контроля и т.д.). На­пример, тактовая частота должна поддерживаться постоянной с точностью ±5% (долговременная стабильность); длина такта огра­ничена не более 128 временными интервалами и т.д. (IRIG , «Стан­дарты телеметрии»). Отметим еще, что при высоких частотах поднесущих полоса часто оказывается шире; значит, частота переключении может быть выше.

Для повышения эффективности иногда полезно иметь неодина­ковую частоту выборки для разных источников.

Источник широкополосной информации должен опрашиваться чаще, чем узкополосный. Это легко достигается простыми изменения­ми во внутренних соединениях коммутатора и декоммутатора. На­пример, если мы соединим положения 1 и 5 в десятиточечном комму­таторе (уплотнителе каналов), то источник данных, соединенный с положениями 1 и 5, будет опрошен дважды за один такт, т. е. с уд­военной частотой. Возможно также произвести подкоммутацию, т.е. выделить один или более временных интервалов, длительность которых разбивается на части для передачи данных от дополнитель­ного ряда источников. Длительность интервала основного такта становится при этом подтактом для подкоммутатора.

Эти методы позволяют легко приспособить систему к широкому диапазону требований к полосе частот.


3.1.3. Телеметрический комплекс.

До cиx пор описывались разные отдельные средства телеметрии. Рассмотрим телеметричес­кую систему, в которой использованы все эти различные средства. Это не означает, что такая сложная система является типичной для телеметрии, однако ее рассмотрение позволит связать между собой различные технические средства.

На рис. 18,а и 18,б показаны передающее и приемное телемет­рические устройства. Система, как видно, состоит из набора раз­личных блоков и обслуживает 39 каналов информации. Показанные на рис. 18,а 18 поднесущих обеспечивают непрерывную передачу информа­ции. Подпесущая 19 (93 кГц) используется в сочетании с коммутато­ром и подкоммутатором. Она имеет относительно большую ширину полосы — 1395 Гц (номинальное значение) и сравнительно хоро­шее время нарастания — 0,25 мс. Это означает, что коммутируе­мые входные данные не должны состоять из сигналов с временем нарастания короче чем 0,25 мс. Действительно, существующие стан­дарты требуют, чтобы интервал дискретизации был не менее номи­нального времени нарастания (здесь 0,25 мкс). Можно положить частоту дискретизации равной 1 кГц, т. е. 1 выборка/с, или 20 мс на один такт. Это позволяет установить скорость коммутации — 4 шага в 1 мс, или 0,25 мс на импульс выборки (для входных кана­лов с 35-го до 38-го). Отметим, что канал 17 соединен с коммутатором в двух точках и, следовательно, опрашивается дважды за такт. Вход­ными данными для канала 17 могут быть сигналы, имеющие интер­вал дискретизации 10 мс, в то время как прочие каналы опрашивают­ся только один раз в каждые 20 мс. Четыре подкоммутированных канала входных данных опрашиваются за 0,25 мс (каждый импульс выборки может длиться 0,25 мс) один раз в каждые 20 мс аналогично остальным коммутируемым каналам. Как показано на схеме, поднесущая С содержит частотно-манипулированный сигнал (ЧМС) с частотой 4 кГц. Этот сигнал может синхронизировать и контролиро­вать работу коммутатора (1 кГц образуется делением частоты 4 кГц) и декоммутирующей секции, обеспечивая точную синхронизацию между коммутатором и декоммутатором (это не существенно, так как обычно синхронизацию обеспечивает синхроимпульс в тактовом интервале). Необходимо отметить, что в целях простоты 20 коммути­руемых входных каналов в примере заполняют весь интервал 20 мс и не оставляют места для синхроимпульса.


Рис. 18,а. Передающая телеметрическая система.


Каналы 1—11 содержат узкополосную информацию. Канал 12 содержит КИМ-сигнал, полученный путем преобразования в цифро­вой дискретный код аналогового сигнала (аналого-цифровое пре­образование). Целесообразно использовать синхронизирующие им­пульсы 4 кГц канала С (с соответствующим делением по частоте) для синхронизации КИМ-информации обоих каналов 12 и 13. Цифровые данные в канале 13 имеют форму КИМ, все другие каналы несут в себе непрерывную информацию. Наиболее широкополосные сигналы могут быть переданы по каналу Н.

Рис. 18,б. Приемная телеметрическая система; следующие за коммутатором фильтры необходимы для воспроизведения аналоговых данных из АИМ-выборок.


На рис. 18,б представлено приемное устройство, соответствую­щее передающему устройству, изображенному на рис. 18,а.

Различные части телеметрических систем производятся в виде отдельных функциональных блоков. К примеру, можно приобрести блоки коммутатора, декоммутатора и подкоммутатора, ФАП-детектор и ЧМ/АМ-приемиики с полным набором фильтров и час­тотных дискриминаторов. Компетентное конструирование систем телеметрии сводится в большей степени к тщательному подбору под­ходящих подсистем.


3.1.4.        Проблемы телеметрии.


Как и в каждой системе, одной из основных проблем в системах телеметрии является проблема точности. Мы судим о качестве сис­темы в большей степени по тому, насколько она точна для различ­ных входных сигналов. Таким образом, необходимо рассмотреть точ­ность воспроизведения телеметрической системой сигналов с раз­личной шириной полосы, т. е. необходимо рассмотреть частотную пропускную способность системы. Вероятно, основными причина­ми ухудшения точности являются шум и взаимное влияние каналов. Улучшить шумовые характеристики линии связи можно путем по­вышения уровня передаваемой мощности. Следовательно, необхо­димо рассмотреть различные узлы телеметрической системы с точки зрения повышения уровня передаваемой мощности.

Атмосферные шумы вводятся в электромагнитную волну (пере­даваемый сигнал) обычно путем амплитудной модуляции, т. е. шумо­вой сигнал вызывает изменение амплитуды полезного сигнала. Это означает, что АМ-радиосвязь наиболее чувствительна к атмосферным помехам. Сигнал ЧМ переносит информацию, заключенную в изме­нениях частоты, а не амплитуды; следовательно, изменения ампли­туды могут быть исключены в приемнике с помощью «ограничителя». Ограничитель рассчитан на выравнивание амплитуды ЧМ-сигнала. Он сохраняет постоянной амплитуду ЧМ-сигнала и уменьшает все АМ-компоненты. Метод ЧМ применяется обычно при больших зна­чениях несущей частоты (100 МГц и выше) и располагает гораздо большей полосой частот, чем метод AM. Применение несущей высо­кой частоты делает ЧМ-системы более компактными и эффективными. Повышение частоты несущей благоприятствует и распространению электромагнитных волн, что еще более улучшает шумовые характе­ристики ЧМ. Так как большинство систем телеметрии предусматривает работу на поднесущих, необходимо рассмотреть помехи и шумы, связанные с уплотнением линии связи введением поднесущих.

Поскольку для передачи информации от многочисленных источ­ников используется только одна несущая, то между поднесущими можно ожидать взаимодействия. Межканальное взаимодействие мо­жет возникнуть по двум основным причинам. Во-первых, если меж­канальное расстояние (интервал частот между поднесущими) слиш­ком мало и часть информации одного канала может попадать в смежный канал. Конечно, взаимодействие подобного типа может быть вызвано и плохими фильтрами поднесущих в приемном уст­ройстве. Во-вторых, может существовать «взаимная модуляция», при которой одна поднесущая вызывает амплитудную модуляцию дру­гой поднесущеп. Это может иметь место, только если существуют не­линейности в звеньях блоков, вырабатывающих составной многока­нальный сигнал. Напомним, что амплитудная модуляция двух сину­соидальных колебаний (например, звукового сигнала и несущей ра­диовещания) приводит к суммарной и разностным частотам. Таким образом, может возникнуть множество новых нежелательных час­тот; некоторые из них, конечно, могут попасть в полосы различных поднесущих, вводя шумы (нежелательные сигналы) в эти каналы. Взаимная модуляция может быть сведена к минимуму путем сохра­нения хорошей линейности усиления в соответствующих звеньях системы.

Необходимо отметить, что межканальное влияние может порож­даться самой коммутацией каналов. Большей частью это является следствием «звона» или медленной скорости спада напряжения при переключениях, что может вызвать просачивание в коммутаторе сиг­нала из одного промежутка времени в другой и ухудшение точности.

По отношению к методам импульсной модуляции проблемы шума приобретают несколько иное значение. В импульсных методах, где амплитуда импульсов фиксирована (КИМ, ШИМ, ЧИМ), шумы дол­жны иметь тот же порядок, что и импульсы сигнала, чтобы оказывать какое-либо влияние. Ошибки в КИМ могут быть вызваны лишь введением ложного или пропуском полезного импульса. Например, двоично-десятичное число 0001 = 1 может превратиться в 1001 = 9 под воздействием ложного импульса. Величина ошибки может быть огромной, однако для возникновения такой ошибки необходим существенный шумовой сигнал. На практике метод КИМ в высокой степени невосприимчив к шумам; то же относится и к методам ШИМ и ЧИМ. Амплитудно-импульсная модуляция, где представляющим информацию параметром является амплитуда сигнала, гораздо более чувствительна к влиянию шумов.


3.1.5. Аппаратура телеметрии и ее приложения.

 

На рис. 19 представлена функциональная схема блока теле­метрического устройства, использующего КИМ. Представленная подсистема содержит только входную секцию и узел обработки им­пульсов. Это позволяет осуществить модульную конструкцию теле­метрических систем с различным числом (таким, какое потребуется для данного приложения) одинаковых блоков, подключаемых к линии связи. Важно отметить, что блок, подобный рассматривае­мому, может быть использован не только для беспроводной связи. Цифровые данные с использованием частотной манипуляции мо­гут быть направлены в телефонную линию, рассчитанную на переда­чу звуковых сигналов, т. е. информации с полосой около 3000 Гц.

На рис. 19 показаны формирователи сигналов, предназначенные для уси­ления и формирования сигналов преобразователя (датчика). Форми­рователь сигналов обычно необходим, так как большинство сигна­лов от датчиков имеет величину порядка милливольт. Узел обработ­ки аналоговой информации включает в себя аналоговый уплотни­тель с подуплотнителем или подкоммутатором, схему выборки с удержанием и аналого-цифровой преобразователь.

Рис. 19. Функциональная схема типичной телеметрической КИМ-системы.


Цифровая инфор­мация вводится через параллельно-последовательный преобразова­тель, так как большинство цифровых данных приходит параллельно, а затем через цифровой уплотнитель каналов. Это означает, что ряд источников аналоговых и цифровых данных коммутируются и груп­пируются для образования последовательности КИМ-значений. Аналого-цифровой кодовый селектор (на первой части диаграммы) управляет последовательностью коммутации данных и вводит сиг­нал в шифратор, который предназначен образовывать подходящие уровни и коды, пригодные для радиолинии или проволочной переда­чи. (Эта подсистема может быть использована вместе с одной лишь поднесущей.) На рисунке показан генератор синхрокода и иденти­фикации такта. Синхрокод обеспечивает тактовую синхронизацию. Для метода КИМ обычным является использование полной кодовой группы с особым кодом, которая встречается лишь один раз за такт (в течение интервала синхроимпульса). Эта синхронизирующая кодовая группа выполняет функции тактового синхроимпульса. Временной контроль подсистем обеспечивается точным импульсным генератором с набором делителей частоты и различных логических схем контроля. Рассматриваемая подсистема способна обрабаты­вать кодовые группы от 1 до 16 бит и такты длиной от 1 до 32 кодо­вых групп; число подтактов может быть от 2 до 32. Скорость, с кото­рой работают различные узлы схемы (т. е. частота бит, частота так­тов), контролируется основным блоком контроля; предусмотрен широкий диапазон этих частот.

В настоящее время в большом количестве производится особый класс телеметрической аппаратуры — «модем». Модем ( от слов модуляция и демодуляция) управляет модуляцией и демодуляцией сигналов телеметрии. Цифровые модемы возникли в связи с широким распространением цифровой техники. Они манипу­лируют только цифровыми данными аналогично подсистеме, изо­браженной на рис. 19. Применяемый способ модуляции и демоду­ляции меняется от модуля к модулю. При чрезмерной скорости следования последовательных кодовых групп цифровых данных модем преобразует их в несколько параллельных замедленных строк, которые используются в системе с уплотнением каналов по частоте. Например, скорость 1200 бит/с получена с помощью 16-канального частотного уплотнения телефонной линии с полосой 375—3025 Гц. Каждый из 16 каналов переносит частотно-манипулированные данные со скоростью 75 бит/с для передачи со скоростью 75×16 = 1200 бит/с. Каналы отстоят друг от друга на 170 Гц, начи­ная с 425 Гц и кончая 2975 Гц. Частотно-манипулированный сигнал состоит из сдвига тона на 85 Гц, сосредоточенного около определен­ной частоты канала fн. Фактически образуются три различимых уровня: fн + 42,5 Гц, fн - 42,5 Гц и fн. Последний уровень не не­сет информации. Следовательно, как импульс, так и пауза (или ло­гические «1» и «0») обособлены и отделены от частоты канала.

Фильтры приемного устройства демодулируют 16 частотно-ма-нипулированных каналов и объединяют их для образования перво­начальной последовательной кодовой группы.

Некоторые модемы вместо частотной манипуляции используют фазовую манипуляцию. Этот метод сдвигает фазу тона в телефонном канале с частотным уплотнением по отношению к опорному сигналу. Обычно фазовые сдвиги на 45, 135, 225 и 315° представляют 2 бита (две логические группы «0» и «1»). Фазовый сдвиг затем измеряется или детектируется в приемном устройстве, и вырабатывается соот­ветствующий логический уровень.

Рассмотренные выше модемы используют узкополосный канал передачи, однако использованные методы пригодны и для широко­полосной передачи. Большим преимуществом широкополосной пере­дачи являются очень высокие частоты следования данных, которые могут быть получены, благодаря чему исключается необходимость последовательно-параллельного преобразования данных. Такие ши­рокополосные системы обычно работают на линиях СВЧ, где шумо­вые эффекты менее вредны. Например, полоса 48 кГц допускает пол­ную скорость передачи информации 48 кбит/с. Теоретически возмож­ны и скорости до 3,8 Мбит/с.





3.1.6.Другие системы связи.

Наиболее общими системами связи являются радиовещание и те­левидение. Федеральной комиссией по связи (ФКС) для радиовещания отведены две области частот. Коммерческое радиовещание ис­пользует для АМ-передач частоты 535—1605 кГц с полосой 10 кГц на один канал. Для частотной модуляции используется диапазон 88—108 МГц с шириной полосы канала 200 кГц: всего 100 каналов, начиная с номера 201 (88,1 МГц) по номер 300 (107,9 МГц). Коммер­ческое ЧМ-радиовещание в противоположность другим ЧМ-передачам ограничено каналами 221—300. Коммерческое телевидение располагает 82 каналами (от номера 1 до 83) в диапазоне частот 44—890 МГц. Распределение ТВ-каналов приводится в таблице на рис. 20.

Ка-нал

Полоса частот, МГц

Ка-нал

Полоса частот, МГц

Ка-нал

Полоса частот, МГц

Ка-нал

Полоса частот, МГц

1

44-50

22

518-524

43

644-650

64

770-776

2

54-60

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.