Меню
Поиск



рефераты скачать Системы связи

22000

18700

25300

660

0,53

3300

0,106

В

30000

25500

34500

900

0,39

4500

0,078

С

40000

34000

46000

1200

0,29

6000

0,058

D

52500

44625

60375

1575

0,22

7875

0,044

Е

70000

59500

80500

2100

0,17

10500

0,033

F

93000

79050

106950

2790

0,13

13950

0,025

G

124000

105400

142600

3720

0,09

18600

0,018

Н

165000

140250

189750

4950

0,07

24750

0,014

Рис. 15. Каналы поднесущих с пропорциональной полосой частот. (Из JRIG, Telemetry Standards.)

 

Как отмечено, все они имеют девиацию частоты ±7,5%. Предполагая индекс модуляции равным 5, можно получить рекомен­дованную полосу частот информации. К примеру, 7,5% от 400 Гц канала 1 равны 30 Гц. Тогда полоса частот сигнала Df равна отноше­нию девиации частоты к индексу модуляции, т.е. Df = 30/5 = 6 Гц. Максимум полосы частот, показанный в таблице на рис. 15, осно­ван на значении индекса модуляции 1 (30 Гц в приведенном приме­ре). Приведенное время нарастания T связано с шириной полосы Df как T=0,35/Df (где T - в мс, а Df - в кГц): таким образом, канал 1 имеет максимальную полосу частот 30 Гц и минимальное время нарастания T = 0,35/0,03 = 11,7 мс. Номинальное значе­ние T основано на индексе модуляции 5. Очевидно, что если для оп­ределенных данных требуется более широкая полоса частот, то, предполагая при этом индекс модуляции неизменным, должна ис­пользоваться большая девиация частоты, например ±15%. Девиа­ция частоты ±15% может быть использована в сочетании с послед­ними восемью каналами, как это показано в таблице на рис. 15. Отметим, что не обязательно применять девиацию частоты ±15% на всех восьми каналах. Например, можно испсльзсвать канал А (вместо канала 14) с девиацией ±15%, а затем каналы с 16-го до 21-го с девиацией ±7,5% (исключив канал 15, примыкающий к ка­налу А) или вместо каналов 16 и 18 применить каналы С и Е с девиа­цией ± 15%, исключив смежные каналы 17, В, D и F.

Таблица, приведенная на рис. 15, базируется на индексах мо­дуляции 1 (максимальная полоса) и 5 (поминальная полоса частот). При надежном приеме может быть использован индекс модуляции 1. Обычно условия связи требуют использования индекса модуляции 5. Ясно, что общая суммарная полоса всех поднесущих должна быть меньше полосы несущей. Ширина полосы несущей должна допускать разделение не только полос поднесущих, но и самих поднесущих. Обычно ширина полосы несущей для ЧМ/ЧМ-приложений состав­ляет ±320 кГц в предназначенном для несущей диапазоне частот 225—260 МГц. Имеются другие диапазоны частот с различными по­лосами, которые определены IRIG в «Стандартах для телеметрии». Например,   диапазон   1435—1535 МГц  предназначен   для использования правительственными и неправительственными орга­низациями главным образом для телеметрии полетных испытаний (1435—1485 МГц для пилотируемых и 1485—1535 МГц для беспилот­ных летательных аппаратов). Диапазон 2000—2300 МГц предназ­начен для использования в других приложениях космических ис­следований, таких, как стартовые ускорители, исследовательские ракеты и ракеты военного назначения, космические двигатели. Стандарты IRIG полностью определяют характеристики несущих и поднесущих, включая стабильность частоты, передаваемую мощность и т.д.

Девиация частоты поднесущей, согласно стандарту, приведенно­му в таблице на рис. 15 (±7,5% или ±15%), пропорциональна центральной частоте, т. е. чем выше центральная частота, тем больше девиация частоты. Такая схема частотного уплотнения (или частотного разделения) каналов относится к схемам, имеющим пропорцио­нальный формат полосы частот. Это означает, что только поднесущие высоких частот пригодны для передачи сигналов с широким спект­ром частот. Возможен другой формат — с постоянной полосой час­тот. Он предписывает постоянную девиацию частоты для подпесущих всех каналов. К примеру, канал 21 между частотами 16 и 176 кГц в этом случае может иметь максимальную девиацию частоты ±2 кГц (с центральными частотами 16, 24 кГц и т. д.), или ±4 кГц (32, 48, 64 кГц и т. д.), или ±8 кГц (32, 64, 96 кГц и т. д.). Полагая индекс модуляции равным 5, получим значения ширины спектра информа­ции 400, 800 и 1600 Гц для соответствующих девиаций частоты: ±2, ±4, ±8кГц. Как только выбрана определенная девиация час­тоты, сразу фиксируется ширина спектра сигнала для всех поднесущих.

3.1.2. Временное разделение каналов (временное уплотнение линии связи)

Метод временного уплотнения используется в многоканальных линиях связи с временным разделением каналов. По таким линиям связи передаются импульсные сигналы, в то время как непрерывные сигналы типичны для линий связи с частотным разделением. При медленно изменяющихся телеметрических данных сигнал будет узкополосным (например, данные о температуре можно передавать с малой скоростью; скажем, один раз в 10 с), и крайне неэкономно за­нимать таким сигналом всю линию радиосвязи. Для увеличения эф­фективности передачи эту же линию связи можно использовать для передачи других измерений в паузах между передачей значений температуры. Ясно, что эффективное использование линии связи может быть достигнуто за счет временного разделения канала связи между несколькими измеряемыми параметрами, каждый из которых передается с частотой, соответствующей скорости его изменения. При таком временном разделении каждой измеряемой величине отводится свой повторяющийся временной интервал. В нашем при­мере в течение 10 с должно быть передано некоторое число разнооб­разных групп данных. Значения различных измеряемых величин. передаются одна за другой через одну и ту же линию связи, каждая величина в свои промежутки времени. Приемное устройство должно быть в состоянии разделить поток значений по каналам так, чтобы в каждом из каналов образовались последовательности значений, соответствующие первичной измеряемой величине. Для этого необ­ходимо обеспечить временную синхронизацию или метить каждый временной промежуток для того, чтобы на приемном конце можно было распознать каждый источник данных. На рис. 16 показаны временное уплотнение каналов и функциональная схема типичной телеметрической системы с разделением каналов по времени.

Общим методом опознавания каждого временного промежутка является отсчет его положения по отношению к синхронизующим импульсам, которые имеются в начале цикла передаваемых значе­ний данных, —«тактовые импульсы». На рис. 17,а показаны более подробные функциональные схемы коммутатора и декоммутатора.

Рис. 16. Временное уплотнение линии с временным разделением каналов.

а-распределение временных интервалов (10 каналов); б-упрощенная функциональная схема системы.


          Коммутатор собирает множество входных каналов от источников сигналов в одну линию передачи. Счетчик задает каждый временной промежуток и, следовательно, место в цикле для каждого источника данных. Например, пятый канал данных в приведенной схеме под­ключен к линии радиосвязи в то время, когда счетчик находится в положении 5, или при счете 5. На рис. 17,б показана упрощенная схема коммутации и декоммутации. Когда переключатель коммута­тора находится в положении 1, в том же положении находится и переключатель декоммутатора, роль которого играет коммутатор, работающий в обратном направлении. Следовательно, данные пер­вого канала передаются и принимаются.Оба переключателя работа­ют синхронно.

Рис. 17. Комутатор - декомутатор.

а - функциональная схема; б - схема взаимодействия. Синхронизирующий сигнал в приемном устройстве может быть извлечен из передаваемых по линии связи синхроимпульсов или образован местным генератором.


Тактовый синхроимпульс обеспечивает точную синхронизацию начала цикла, гарантирующего согласованные переключения ком­мутатора и декоммутатора. Отметим, что в коммутаторе и декоммутаторе используется одинаковая аппаратура; различие заключается лишь в направлении движения данных.

Так как коммутация и декоммутация управляются фиксированной частотной синхронизацией, частота переключений также стабиль­на и длительность каждого временного промежутка одинакова. Однако это может быть невыгодным в случаях, когда для различных источников данных требуются существенно разные полосы частот. Для того чтобы понять связь между полосой частот и частотой пере­ключении, необходимо рассмотреть процесс выборки данных.

Как отмечалось ранее, синусоида может быть восстановлена из последовательности выборок ее мгновенных значений. Для воспроизведения синусоиды частоты 1 кГц с высокой верностью (искажения менее 1%) требуется по меньшей мере 5 выборок из каждого периода сигнала. Следовательно, сигнал с частотой 1 кГц должен быть подвергнут дискретизации со скоростью 5000 значений в секунду, т. е. 5 выборок на период измеряемой величины. Если мы предполагаем коммутировать сигналы от 10 источников данных (имеющих полосы частот по 1 кГц), для каждого из которых требует­ся скорость дискретизации 5000 выборок в секунду, то необходима скорость коммутации 10×5000 выборка/с = 50000 выборка/с. Ком­мутатор должен переключаться от источника к источнику с частотой 50 кГц (через 20 мс), так что каждый источник сигналов будет опро­шен один раз за каждые 10 переключений, т. е. один раз каждые 20 мс, но с частотой 5 кГц. Частота тактов, т. е. число тактов в секун­ду, будет равна 5000 такт/с. Частота переключений равна тактовой частоте, умноженной на число источников данных в системе, или тактовой частоте, умноженной на число импульсов в такте (5000×10=50000 имп./с). Линия связи должна быть в состоянии передавать импульсные данные с такой высокой частотой (50000 имп./с) без ощутимых искажений. Это означает, что необходима система связи. с шириной полосы пропускания гораздо больше 50000 Гц.

Выборки данных от различных источников в системе, показанной на рис. 16,б, непосредственно модулируют несущую. Наряду с такой непосредственной модуляцией часто бывает, что выборки данных используются для модуляции поднесущей, которая в свою ечередь модулирует несущую, как это показано штриховыми лини­ями на рис. 16,б. Выборки данных от группы источников переда­ются, таким образом, на одной из поднесущих в системе с частотным уплотнением каналов. Это позволяет применять оба метода уплот­нения каналов в одной линии связи. Сами по себе выборки данных это не что иное, как импульсные значения сигнала при амплитудно-импульсной модуляции (АИМ), т.е. информация является амплитудно-нмпульсно-модулированной. Так как такие АИМ-сигналы модулируют поднесущую (например, путем ЧМ), которая затем мо­дулирует несущую (к примеру, также путем ЧМ), то в результате получается АИМ/ЧМ/ЧМ-система.

Теперь рассмотрим пример, демонстрирующий влияние дискре­тизации сигнала на ширину полосы частот системы связи.

Рассмотрим несущую с частотой 100 МГц, которая модулируется (ЧМ) поднесущей с центральной частотой 70 кГц. Информация пере­носится с помощью частотной модуляции поднесущей 70 кГц. Таким образом, имеем ЧМ/ЧМ-канал связи. Чтобы соответствовать стан­дартам, необходимо ограничить девиацию частоты поднесущей до ±15%. Это означает, что при индексе модуляции 5 ширина полосы информации ограничена до 2100 Гц, т. е. получается гораздо уже полосы 50000 Гц, необходимой для предложенной системы с уплот­нением каналов. Если число выборок в такте было бы сокращено до одной, что означает оставление одного из источников данных, то потребовалась бы частота переключений 5 кГц, т. е. по-прежнему шире полосы 2100 Гц, которой располагает поднесущая 70 кГц. Отметим, что в случае одного источника данных не требуется ника­кого уплотнения каналов и, следовательно, возможна прямая непре­рывная передача (без выборки). В этом случае ширина полосы 2100 Гц в два раза больше полосы, необходимой для сигнала от одного источника (1 кГц в предыдущем примере). Такое ухудшение эффективности использования полосы частот (при дискретизации требуется полоса 5 кГц, без дискретизации — только 1 кГц) обус­ловлено свойствами самой дискретизации сигнала. При форми­ровании пяти выборок мгновенных значений сигнала на каждый пе­риод непрерывного сигнала мы расширяем полосу частот сигнала более чем в пять раз, а следовательно, и требуемую полосу канала. Хотя при использовании одной поднесущей для передачи сигналов от большого числа источников полоса частот используется неэффек­тивно, но это имеет и свои достоинства, проявляющиеся при узкополосных сигналах от источников. Поэтому временное разделение, требующее дискретизации сигнала, в основном используется в при­ложениях с низкими требованиями к полосе частот. Однако широкополосные сигналы тоже .могут быть переданы с использованием дли­тельных выборок. Длительность каждой выборки в таком методе го­раздо больше, чем период ннформации, и составляет 5 и более ее периодов. Это просто означает, что выборка содержит не одно мгно­венное значение, а конечный отрезок значений сигнала, передавае­мый в данный тактовый интервал времени. При таком методе необ­ходимо быть уверенным в отсутствии потерь данных за время пере­рыва передачи ниформацин от определенного источника.

Выше предполагалось, что способом передачи является ЧМ/ЧМ. Следовательно, в каждый отдельный интервал времени изменяю­щаяся частота поднесущей представляет собой значение измеряе­мой величины, подвергнувшейся выборке в это время. В течение этого интервала времени отклонение частоты от центра поднесущей соответствует напряжению выборки, которое модулирует частоту поднесущей. Ширина этих временных интервалов фиксирована, а такт их последовательности задается синхроимпульсом. Синхроим­пульс вызывает максимальное отклонение частоты и имеет длитель­ность, равную удвоенному обычному временному промежутку. Уширение необходимо для выделения импульса синхронизации из им­пульсов выборок сигналов.

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.