|
| |||||||||
Выполнил: |
студент группы ##-### Гуренков Дмитрий |
|||||||||
Проверил: |
преподаватель Ручьев М. К. |
Москва 2008 г.
Задание.................................................................................................................................................................................. 3
Исходные данные......................................................................................................................................................... 3
Аппроксимация частотной характеристики фильтра.................................................................. 4
Последовательность шагов............................................................................................................................... 4
Тип фильтра.................................................................................................................................................................... 4
Требования к ФНЧ-прототипу.............................................................................................................................. 4
Порядок, нули и полюсы ФНЧ-прототипа.................................................................................................. 5
Нули и полюсы синтезируемого фильтра................................................................................................ 5
Передаточная функция и АЧХ............................................................................................................................ 6
Расчет.................................................................................................................................................................................. 6
Реализация аналогового фильтра................................................................................................................ 9
Лестничная - структура................................................................................................................................ 9
Теория................................................................................................................................................................................ 9
Расчет............................................................................................................................................................................. 10
Каскадное соединение - звеньев....................................................................................................... 11
Теория............................................................................................................................................................................. 11
Расчет............................................................................................................................................................................. 12
Гираторная реализация безиндуктивного фильтра...................................................................... 13
Теория............................................................................................................................................................................. 13
Расчет............................................................................................................................................................................. 14
-фильтр с каскадной структурой...................................................................................................... 14
Теория............................................................................................................................................................................. 14
Расчет............................................................................................................................................................................. 15
Сравнительная характеристика различных реализаций синтезируемого фильтра. 17
Литература....................................................................................................................................................................... 18
1. Представить данные на синтез частотно-избирательного фильтра в графической форме с использованием нормированной частоты .
2. Определить технические требования к нормированному ФНЧ прототипу: тип и порядок фильтра.
3. Найти координаты нулей и полюсов нормированной передаточной функции ФНЧ прототипа.
4. Найти лестничную структуру ФНЧ прототипа с нормированными элементами.
5. Определить координаты нулей и полюсов передаточной функции синтезируемого частотно-избирательного фильтра. Построить график АЧХ с использованием денормированной частоты .
6. Определить лестничную структуру синтезируемого фильтра с нормированными элементами и провести денормирование элементов.
7. Выбрать возможные варианты RLC-звеньев первого и второго порядков, предназначенных для каскадной реализации фильтра, рассчитать величины элементов и составить полную схему фильтра.
8. Уменьшив частотные параметры на два порядка:
8.a. Составить схему и провести расчет элементов для гираторной реализации фильтра.
8.b. Выбрать возможные варианты ARC-звеньев первого и второго порядков, предназначенные для безиндукционной каскадной реализации фильтра, рассчитать величины элементов и составить полную схему фильтра.
9. Сделать вывод, дав сравнительную характеристику различным вариантам реализации синтезируемого фильтра.
Задача синтеза фильтра состоит в разработке электрической схемы устройства, обладающего требуемыми частотными и временными характеристиками. Курсовая работа предполагает проектирование фильтра на основе требования к форме его характеристики затухания. При синтезе полосно-пропускающего фильтра вводится требование к верхним и нижним граничным частотам полосы пропускания (, , , ).
Амплитудно-частотная характеристика (АЧХ) фильтра и характеристика затухания связаны друг с другом выражением
,
поэтому при рассмотрении требований к АЧХ необходимо вместо допусков и ввести параметры: - допустимую неравномерность в полосе пропускания и - максимально допустимую передачу в полосе задержания, причем
, .
Типичная АЧХ полосно-пропускного фильтра Чебышева приведена на рисунке.
Процедура проектирования частотно-избирательного фильтра включает в себя два основных этапа:
1. Этап проектирования, в ходе которого подбирается передаточная функция, удовлетворяющая заданным требованиям (АЧХ, выделенная из аппроксимирующей передаточной функции, не должна выходить за пределы заданного коридора допусков);
2. Этап реализации, суть которого – в выборе принципа реализации передаточной функции, разработке и расчете конкретной схемы фильтра, обладающего найденной передаточной функцией.
Порядок выполнения первого этапа достаточно хорошо разработан, поставленная задача решается с использованием какого-либо из многочисленных справочников по расчету фильтров. Решение второй задачи в рамках второго этапа многовариантно. Это связано с тем, что известно довольно много принципов и схем, позволяющих реализовать найденную передаточную функцию.
На этапе аппроксимации необходимо проделать следующее:
1. Выбрать тип фильтра.
2. Пересчитать исходные данные в требования к фильтру – прототипу нижних частот (ФНЧ-прототипу).
3. Определить минимальный порядок ФНЧ-прототипа, нули и полюсы его передаточной функции (с помощью справочника).
4. Пересчитать нули и полюса ФНЧ-прототипа в нули и полюсы синтезируемого фильтра.
5. Записать передаточную функцию фильтра, найти и построить АЧХ или характеристику затухания.
Существует ряд типов фильтров, различающихся по характеру их передаточных функций. Например, фильтр Баттерворта, фильтр Чебышева, эллиптический (Золоторева - Каура) фильтр. Каждый из указанных типов в определенном смысле оптимален. Главная же особенность состоит в том, что заданную избирательность фильтр Чебышева обеспечивает при меньшем порядке, чем фильтр Баттерворта, а эллиптический фильтр в этом смысле лучше чебышевского.
Для того чтобы не было привязки начального этапа расчета к конкретным значениям частоты и, следовательно, приводимые в справочниках таблицы и графики имели большую общность, осуществляется нормировка частотной оси и ее трансформация таким образом, чтобы свести характеристики ФНЧ, ФВЧ, ППФ, ПЗФ к характеристикам эквивалентного ФНЧ-прототипа.
Амплитудно-частотная характеристика ФНЧ-прототипа определена на нормированной оси частот, причем граничная частота полосы пропускания , а граничная частота полосы задержания . В качестве нормирующей частоты для ФНЧ и ФВЧ выбирается граничная частота полосы пропускания , а для ППФ и ПЗФ – центральная частота полоса пропускания (задержания) . Формулы для вычисления нормированных частот синтезируемого фильтра и его ФНЧ-прототипа приведены в таблице 2.1.[1] Обозначение частоты с тильдой () относится к проектируемому фильтру, а без тильды () – к ФНЧ-прототипу. При синтезе ППФ и ПЗФ определяется коэффициент геометрической асимметрии , в зависимости от значения, которого по-разному вычисляют нормированные частоты. Важно проконтролировать, чтобы всегда выполнялись условия: и . В противном случае невозможно правильное преобразование ППФ и ПЗФ из ФНЧ-прототипа.
Итак, требования к АЧХ ФНЧ-прототипа найдены. Они выражаются тремя параметрами: , и .
Минимальный порядок ФНЧ-прототипа, необходим для того, чтобы его АЧХ укладывались в коридор допусков, определяется с помощью специальных графиков, которые можно найти в справочнике. Из нужной таблицы и подходящей строки необходимо выписать нормированные координаты нулей и полюсов. Нули лежат на мнимой оси плоскости комплексной частоты .
Пересчет координат нулей и полюсов ФНЧ-прототипа в соответствующие параметры синтезируемого фильтра осуществляется по формулам, приведенным в таблице 2.4.[2] При этом следует обратить внимание на следующие моменты:
1. Данные формулы получены на основе правил замены комплексных переменных при переходе от ФНЧ-прототипа к другим видам фильтров;
2. Каждый полюс или нуль при переходе от ФНЧ-прототипа к ППФ или ПЗФ порождает два полюса или два нуля, так что порядок синтезируемого фильтра по сравнению с прототипом увеличивается в два раза;
3. Помимо нулей, вычисленных по приведенным формулам, появляются дополнительные нули , количество которых (кратность) равна разности между числом полюсов и нулей в ФНЧ-прототипе; сказанное справедливо для ФВЧ и ППФ и обусловлено пересчетом в начало координат - плоскости - кратного нуля ФНЧ-прототипа, расположенного в бесконечности;
4. При переходе к ПЗФ каждый из нулей ФНЧ-прототипа, находящихся в бесконечности, пересчитывается в пару нулей ;
5. В результате пересчетов оказывается, что для ФНЧ и ПЗФ количество нулей равно количеству полюсов, а для ППФ число нулей на меньше число полюсов;
6. При вычислении полюсов ППФ и ПЗФ группируются значения и с разными индексами "+" и "–", в результате чего полюс, расположенный на - плоскости ближе к мнимой оси, имеет меньшую частоту.
Располагая координатами нулей и полюсов синтезируемого фильтра, можно записать передаточную функцию:
, (2.1)
где - количество нулей, - количество полюсов синтезируемого фильтра, - нормировочный коэффициент. Диаграмма нулей и полюсов определяет передаточную функцию с точностью до постоянного множителя, но на форму АЧХ это не оказывает влияния. АЧХ удобно представлять в нормированном виде. С этой целью коэффициент выбирается таким, чтобы . Значения коэффициента для различных видов приведены в таблице 2.5.[3] В ней - это коэффициент, взятый из последней колонки таблицы справочника, - параметр преобразования для ППФ и ПЗФ, - порядок ФНЧ-прототипа. Итак, для фильтра Чебышева ППФ значение коэффициента .
Заданные технические требования представлены как Таблица 1.
Тип фильтра
, [дБ]
, [дБ]
, [кГц]
, [кГц]
, [кГц]
, [Ом]
Чебышев
35
1.25
100
120
150
50
Отталкиваясь от таблицы 2.1[4], рассчитаем нормированные частоты синтезируемого фильтра:
, ;
, ;
, ;
, ;
, ;
, ;
, ;
Коэффициент геометрической асимметрии равен 1. А центральна циклическая частота полосы пропускания .
После проведенного анализа данных с помощью справочника, были определены параметры: тип, порядок фильтра, полюсы и нули ФНЧ-прототипа, а также нормированные значения элементов цепи.
Страницы: 1, 2
Новости |
Мои настройки |
|
© 2009 Все права защищены.