Меню
Поиск



рефераты скачать Реверсная магнитная фокусирующая система мощного многолучевого клистрона

Рm – микропервеанс электронного потока;

S – линейную сходимость электронного потока;

b – коэффициент заполнения пролетного канала электронным потоком.

В результате расчета определяется теоретическая и технологическая геометрия электронной пушки для клистронов и ламп бегущей волны.

2.2. Программа «Алмаз» по расчету ЭОС методом анализа.

Для расчета ЭОС методом Анализа изложенном в параграфе 1.3.2 использована программа «Алмаз». Эта программа состоит из двух загрузочных модулей: aupr.exe – расчетный модуль, grafl.exe – графический модуль.

Для выполнения расчетов по программе aupr.exe необходимо предварительно подготовить файл исходных данный «fd». Затем выполнить расчеты с помощью программы aupr.exe. При этом по запросу ЭВМ указать файл вывода результатов расчета «frl». В процессе расчета программа сама создает следующие файлы для построения результатов расчета в графической форме:

geom - для построения геометрии,

traek - для построения траекторий электронов,

tok - для построения распределения плотности тока.

Для получения результатов расчета в графической форме необходимо запустить программу grafl.exe, работающей в режиме диалога, и в соответствии с запросами осуществить вывод результатов расчета в виде графиков.

При этом в программе grafl.exe работают пункты меню в соответствии со следующей таблицей:

1.     Геометрия – работает.

2.     Траектории – работает.

3.     Эквипотенциали эл. поля – не работает.

4.     График распределения BZ – не работает.

5.     График распределения JZ – не работает.

6.     График токооседания – не работает.

При повторном выполнении расчетов необходимо предварительно ввести в файл «fd» новые данные и удалить файлы «frl», «geom», «traek», «tok», старого варианта.

При подготовке исходных данных ввод исходных данных осуществляется с дисплея. Данные вводятся в виде последовательности строк, содержащих наименования массивов и переменных и их числовые значения.

Числовые значения вводятся в виде строки чисел действительного типа форматом 8F8.0, причем последовательность ввода массивов и переменных должна строго выполнятся.

При подготовке исходных данных необходимо придерживаться следующих правил:

1. Сначала вводится строка, содержащая наименования переменных или массива и символы – разграничители «I», определяющие начало и конец поля, в котором располагаются числовые значения в соответствии с указанным форматом (8F8.0).

2. В следующей строке записываются под наименованием переменных или массива соответствующие числовые значения. Числовые значения массива могут располагаться в нескольких строках.

3. Числа могут располагаться в любом месте в пределах отведенного для них поля.

4. Количество символов в числе, включая знак и кодовую точку для чисел действительного типа не должно превышать ширины поля.

5. Знак «+» у чисел можно опускать.

Далее приведены наименования переменных, их назначение, последовательность массивов, которые объединяют эти переменные:

Массив 1 описывает общие данные о приборе, данные определяющие точность решения:

RU – максимальные размер области для поля по оси R.

RF – максимальный размер области для пространственного заряда по оси R.

ZU– максимальные размер области для поля по оси Z.

TTT – конец прибора по оси Z и последняя плоскость симметрии.

FH – число узлов, приходящихся на область перекрытия. FH = S /H, где S – протяженность участка прибора, общего для соседних областей (область перекрытия) S = 1.5dk, где dk – диаметр канала.

H – шаг разностной сетки, выбираемой из условий:

          H>=RU/147,

          H>=RF/147,

          H>=ZU/297.

VQ – шаг интегрирования. VQ = (2-3)*H.

U – анодное напряжение в вольтах.

FK – расстояние от катода до плоскости. В которой определяется ток и первеанс прибора. FK = (2-3)*H.

RK – радиус кривизны катода.

HK – высота катода.

ZO – координата по оси Z центра окружности катода.

Y1, Z1 Y2, Z2 – координаты конического катода (временно не используются) и полагаются равными Y1 = Z1 = Y2 = Z2 0.

FE – число слоев электронного потока FE<=30.

GE – критерий сходимости потенциала при расчете поля. GE = 0.001 – 0.0001.

RM– критерий неоднородности магнитного поля.

NP – число плоскостей симметрии, которыми прибора разбивается на отдельные области NP<=30.

IWN – число линий второго порядка, описывающих контур прибора.

IWP – число линий первого порядка, описывающих контур прибора.

NPR – максимальное число последовательных приближений при расчете каждой области.

NS – параметр, задающий частоту вывода цифровой информации на печать. При NS = 0 информация выводится на каждом шаге интегрирования.

NPL – число вводимых в массив Х15 плоскостей.

TK – температура катода в градусах Кельвина. Для расчета без учета влияния тепловых скоростей положить TK = 0.

NEG – число энергетических групп для многоскоростного потока NEG = 1-3.

Массив 2 описывает плоскости, в которых определяется токопрохождение.

Х15 (1) – Z1

Х15 (2) – Z2

Х15 (30) – Z30

Примечание:

1. Первые плоскости должны находиться в местах геометрической симметрии прибора. Число их не должно превышать 30.

2. Х15 (1) равно начальной границе прибора.

3. Х15 (NP) = TTT.

4. При расстановке плоскостей симметрии, на которые разбивается прибор, должно выполняться условие:

          max (Х15 (i + 1) - Х15 (i)) <= ZU – FH*H

Массив 3 описывает контур прибора и потенциалы на электродах. Геометрические размеры прибора должны быть заданы в (мм).

Х4

(1)

ZH –

ü

ïý

ïþ

координаты начала (ZH, RH) и конца (ZK, RK) линии второго порядка


(2)

RH –


(3)

ZK –


(4)

RK –


(5)

UH –

нормированный потенциал электрода


(6)

ZO –

ü

ý

þ

координаты центра окружности


(7)

RO –


(8)

R –

радиус окружности


(К)

ZH –

ü

ïý

ïþ

координаты начала (ZH, RH) и конца (ZK, RK) линии первого порядка


(К+1)

RH –


(К+2)

ZK –


(К+3)

RK –


(К+4)

UH –

нормированный потенциал электрода

Примечание:

1. Все числа, описывающие данную линию набираются в одной строке.

2. Все линии второго порядка должны быть описаны в начале массива восемью числами (ZH, RH, ZK, RK, UH, ZO, RO, R). Линии первого порядка описываются после линий второго порядка пятью числами (ZH, RH, ZK, RK, UH).

3. Конец прибора должен быть замкнут.

4. Максимальный размер массива Х4 (500).

Массив 4 описывает данные о магнитном поле.

B – максимальное значение продольной магнитной индукции в гауссах.

R1, R2– значения радиусов, на которых задается распределение магнитной индукции по оси Z, причем R1 = 0.5* RO (RO – радиус канала), R2 = 2*R1.

TM – начальная граница магнитного поля, ТМ <= (ZO – RK) – HM.

HM – расстояние между соседними точками по оси Z для значений магнитной индукции.

NM – число табличных значений магнитной индукции по оси вдоль всего прибора при R = 0. NM <= 200.

Массив 5 описывает распределение магнитной индукции по оси Z.

XM

(1)

BZH1 –

ü

ý

þ

табличные нормированные значения магнитной индукции по оси Z.


(2)

BZH2 –

Примечание:

1. Распределение магнитной индукции задается при R = 0, R = R1, R = R2.

2. Если магнитное поле однородно по оси R (RM = 1), то распределение магнитной индукции задается только для R = 0 (осевое распределение BZN).

3. Массивы 4, 5 не вводятся при RM = 0, т.е. когда магнитное поле отсутствует.

4. Данные о магнитном поле должны быть по всей длине прибора.


2.3. Расчет существующего варианта ЭОС прибора КИУ-147.

Расчет производился методом анализа по программе «Алмаз» описанной в параграфе 2.2. Для этого создавался файл исходных данных «fd». Расчет проводился при анодном напряжении 52 кВ и при максимальном значении амплитуды магнитного поля 926 Гс. Результат расчета показан на рис.2.2, а соответствующий файл исходных данных представлен в таблице 2.1.

На этом рисунке показано распределение реверсного магнитного поля на оси одного из пролетных каналов наружного ряда отверстий. Здесь же показана траектория электронов формируемого электронного потока. Расчетное значение первеанса одного луча составило Рm = 0,57 мкА/В3/2, а ток одного луча 6,7 А. Учитывая, что в приборе образовано 40 пролетных каналов суммарный расчетный первеанс используемой ЭОС составил Рm = 22,8 мкА/В3/2.

Как следует из результатов расчета, максимальное значение радиуса электронного потока достигается в выходной части прибора R = 2,7 мм. Радиус пролетной трубы клистрона составляет 3,25 мм. Поэтому


Результаты расчета существующего варианта ЭОС.

 


Рис.2.2.


Таблица 2.1

Файл исходных данных к рисунку 2.2.


  RU   I  RF   I  ZU   I  TTT  I  FH   I   H   I  VQ   I  U   I

 22.     5.      45.     240.    40.     0.16    0.32   52000.

  FK   I  RK   I  HK   I  ZO   I  Y1   I  Z1   I  Y2   I  Z2  I

 0.32    11.     0.89    11.     0.      0.      0.      0.

  FE   I  GE   I  RM   I  NP   I  IWN  I  IWP  I  NPR  I  NS  I

 19.     0.001   1.      10.     1.0     7.0     10.0    2.

  NPL  I  TK   I  NEG  I       I       I       I       I      I

 10.     0.      1.

  X15  I       I       I       I       I       I       I      I

-0.24    40.     70.     100.    130.    160.    190.    220.

 250.    280.

  X4   I       I       I       I       I       I       I      I

 0.0     0.0     0.89    4.34    0.0     11.     0.0     11.

-1.0     4.34    0.89    4.34    0.0  

-1.0     4.7     2.2     4.7     0.0

 2.2     4.7     2.4     4.9     0.0

 2.4     4.9     2.4     23.     0.0

 11.96   23.     11.96   3.25    1.0

 11.96   3.25    270.    3.25    1.0

 270.    3.25    270.    0.      1.0

  BM   I  R1   I  R2   I  TM   I  HM   I  NM   I       I      I

 1000.   0.3     0.7    -6.      1.5     200.

  XM   I       I       I       I       I       I       I      I

 0.014   0.014   0.015   0.015   0.015   0.015   0.015   0.015

 0.015   0.014   0.011   0.002  -0.021  -0.092  -0.247  -0.486

-0.674  -0.754  -0.787  -0.798  -0.803  -0.805  -0.805  -0.806

-0.805  -0.805  -0.804  -0.804  -0.803  -0.802  -0.801  -0.801

-0.800  -0.799  -0.799  -0.800  -0.801  -0.801  -0.801  -0.802

-0.804  -0.805  -0.807  -0.808  -0.811  -0.813  -0.814  -0.816

-0.817  -0.819  -0.821  -0.822  -0.823  -0.823  -0.824  -0.823

-0.822  -0.821  -0.820  -0.817  -0.813  -0.802  -0.780  -0.717

-0.578  -0.330  -0.097   0.087   0.320   0.615   0.823   0.906

 0.942   0.956   0.964   0.969   0.972   0.976   0.978   0.980

 0.982   0.984   0.985   0.986   0.986   0.986   0.986   0.986

 0.986   0.986   0.986   0.986   0.986   0.985   0.985   0.985

 0.984   0.985   0.985   0.984   0.984   0.984   0.984   0.983

 0.982   0.981   0.980   0.979   0.977   0.975   0.973   0.970

 0.966   0.962   0.956   0.942   0.914   0.834   0.661   0.368

 0.106  -0.091  -0.333  -0.613  -0.800  -0.873  -0.905  -0.917

-0.925  -0.929  -0.932  -0.935  -0.938  -0.940  -0.943  -0.945

-0.946  -0.948  -0.949  -0.950  -0.950  -0.951  -0.951  -0.952

-0.952  -0.953  -0.953  -0.954  -0.954  -0.955  -0.957  -0.958

-0.958  -0.958  -0.959  -0.960  -0.960  -0.961  -0.962  -0.962

-0.961  -0.960  -0.959  -0.958  -0.957  -0.955  -0.951  -0.946

-0.937  -0.917  -0.876  -0.768  -0.578  -0.320  -0.092   0.089

 0.278   0.451   0.557   0.586   0.583   0.557   0.524   0.487

 0.449   0.413   0.379   0.347   0.319   0.293   0.270   0.249

 0.229   0.213   0.199   0.186   0.174   0.164   0.155   0.148

максимальное значение коэффициента заполнения канала пучком (b) по результатам расчета составляет b = 0,875. Такое значение коэффициента заполнения канала пучком является недопустимо высоким и может служить причиной большого токооседания пучка на стенки пролетного канала в динамическом режиме работы прибора. В связи с этим встает задача оптимизации данной ЭОС с целью уменьшения радиуса формируемого пучка при сохранении значения первеанса.

Анализ результатов расчета представленный на рис.2.2 показывает, что имеется две причины, приводящие к увеличению радиуса пучка в выходной части прибора:

- неламинарность электронных траекторий в формируемом электронной пушкой пучке. Крайняя траектория пучка формируемого пушкой пересекает все остальные траектории, близко подходит к оси, а затем, расширяется и приводит к увеличению заполнения канала пучком;

- не оптимальность фазы влета пучка во второй реверс. Как следует из рис.2.2, при подходе ко второму реверсу электронный пучок является расширяющимся. Проходя зону реверса, пучок дополнительно расширяется на участке с малыми значениями магнитного поля и поэтому достигает недопустимо большого значения радиуса в выходной части прибора.

Для устранения указанных причин увеличения радиуса электронного потока необходимо провести расчет оптимизацию электронной пушки прибора, а также расчет и оптимизацию распределения магнитного поля в системе.


2.4. Расчет и оптимизация электронной пушки.

Для оптимизации параметров электронной пушки использовалась совокупность методов синтеза и анализа. При расчете ЭОС методом синтеза использовалась программа «Синтез» описанная в параграфе 2.1, а при расчете ЭОС методом анализа использовалась программа «Алмаз» описанная в параграфе 2.2.

При расчете электронной пушки методом синтеза задавались три основные параметра:

Рm – микропервеанс электронного потока;

S – линейную сходимость электронного потока;

b – коэффициент заполнения пролетного канала электронным потоком.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.