Меню
Поиск



рефераты скачать Распростарнение радиоволн

Распростарнение радиоволн

     ВВЕДЕНИЕ



     Как правило, термин «радиоволны» обозначает электромагнит­ные  волны, принадлежащие  тому  или иному  диапазону частот, применяемому в радиотехнике. Специальным решением Международного союза электросвязи (МСЭ) и Международной электротехнической комиссии  (МЭК) принято различать следующие диапа­зоны радиочастот и соответствующих длин радиоволн:

     очень низкие частоты (ОНЧ) — от 3 до 30 кГц, или мириаметровые волны     (длина волны от 100 до 10 км);

     низкие частоты   (НЧ) — от 30 до 300 кГц, или километровые волны   (длина волны от  10 до  1  км);

     средние частоты  (СЧ) — от 300 кГц до 3 МГц, или гектометровые волны (длина   волны от 1 км до 100 м);

     высокие частоты   (ВЧ) — от 3 до 30 МГц,  или  декаметровые волны (длина волны от 100 до 10 м);

     очень высокие частоты   (ОВЧ) — от 30 до 300 МГц, или мет­ровые волны (длина   волны от 10 до 1 м);

     ультравысокие частоты (УВЧ) — от 300 МГц до 3 ГГц, или дециметровые волны     (длина волны от 1 м до 10 см);

     сверхвысокие частоты  (СВЧ) — от 3 до 30 ГГц,    или сантимет­ровые волны (длина волны от 10 до 1 см);

     крайне высокие частоты (КВЧ) — от 30 до 300 ГГц, или миллиметровые волны   (длина волны от 1 см до 1 мм).


      Радиотехника исторически развивалась с неуклонной тенденци­ей к освоению все более высокочастотных диапазонов. Это было связано прежде всего с необходимостью создавать высокоэффек­тивные антенные системы, концентрирующие энергию в пределах узких телесных углов. Дело в том, что антенна с узкой диаграм­мой направленности обязательно должна иметь поперечные раз­меры, существенно превышающие рабочую длину волны. Такое условие легко выполнить в метровом, а тем более в сантиметровом диапазоне, в то время как остронаправленная антенна для мириаметровых волн имела бы совершенно неприемлемые габариты.


      Вторым фактором, определяющим ценные свойства высокочас­тотных диапазонов, служит то обстоятельство, что здесь удается реализовать большое число радиоканалов со взаимно не пересекаю­щимися полосами частот. Это дает возможность, с одной стороны, широко использовать принцип частотного разделения каналов, а с другой — применять широкополосные системы модуляции, на­пример частотную модуляцию. При определенных условиях такие системы модуляции способны обеспечить высокую помехоустойчи­вость работы радиоканала.

      В практике радиовещания и телевидения сложилась также не­сколько упрощенная классификация диапазонов радиоволн. Со­гласно ей, мириаметровые волны называют сверхдлинными волна­ми (СДВ), километровые — длинными волнами (ДВ); гектометровые — средними волнами (СВ), декаметровые —короткими вол­нами (КВ), а все более высокочастотные колебания с длинами волн короче 10 м относят к ультракоротким волнам (УКВ).


1. РАСПРОСТРАНЕНИЕ РАДИОВОЛН В СВОБОДНОМ

    ПРОСТРАНСТВЕ


      Система передачи информации со­стоит из трех основных частей: передающе­го устройства, приемного устройства и про­межуточного звена — соединяющей линии. Промежуточным звеном является среда — пространство, в котором распространяются радиоволны. При распространении радиоволн по естественным трассам, т. е. в условиях, когда средой слу­жит земная поверхность, атмосфера, косми­ческое пространство, среда является тем звеном радиосистемы, которое практически не поддается управлению.


      При распространении радиоволн в сре­де происходят изменение амплитуды поля волны, изменение ско­рости и направления распространения, пово­рот плоскости поляризации и искажение передаваемых сигналов. В связи с этим, про­ектируя линии радиосвязи, необходимо:


     рассчитать   мощность пе­редающего устройства или мощность сигнала на входе приемного устройства (определить энергетические параметры линий);

     определить оптимальные рабочие волны при    заданных    условиях   распространения;

     определить истинную скорость и на­правление прихода сигналов;

    учесть возможные искажения передава­емого сигнала и определить меры по их устранению.

     Для решения этих задач необходимо знать электрические свойства земной поверх­ности и атмосферы, а также физические процессы, происходящие при распростране­нии радиоволн.

     Земная поверхность оказывает сущест­венное влияние на распространение радио­волн:

     в полупроводящей поверхности Земли радиоволны поглощаются;

     при падении на земную поверхность они отражаются;

     сфе­рическая форма земной поверхности препятствует прямолинейному распространению радиоволн.

     Радиоволны, распространяющие­ся в непосредственной близости от поверх­ности Земли, называют  земными  радиоволнами   (1 на рис.1.1). Рассматривая распространение   зем­ных   волн,   атмосферу   считают средой без потерь с относительной диэлектрической проницаемостью ε, равной единице. Влияние атмосферы  учитывают отдельно,  внося   необходимые поправки.


      В окружающей Землю атмосфере раз­личают три области, оказывающие влияние на распространение радиоволн: тропосферу, стратосферу и ионосферу. Границы между этими областями выражены не резко и за­висят от времени и  географического места.


      Тропосферой называется приземной слой атмосферы, простирающийся до высоты 7-18 км. В области тропосферы температура воздуха с высотой убывает. Тропосфера неоднород­на как в вертикальном направлении, так и вдоль земной поверхности. Ее электрические параметры меняются при изменении мете­орологических условий. В тропосфере про­исходит искривление траектории земных ра­диоволн 1, называемое рефракцией. Рас­пространение тропосферных радиоволн 2 возможно из-за рассеяния и отражения их от неоднородностей тропосферы. Радиоволны миллиметрового и сантиметрового диа­пазонов в тропосфере поглощаются.


     Стратосфера простирается от тро­попаузы до высот 50—60 км. Стратосфера отличается от тропосферы существенно меньшей плотностью воздуха и законом распределения температуры по высоте: до высоты 30—35 км температура постоянна, а далее до высоты 60 км резко повышается. На распространение радиоволн стратосфера оказывает то же влияние, что и тропосфера, но оно проявляется в меньшей степени из-за малой плотности воздуха.


     Ионосферой называется область атмосферы на высоте 60—10 000 км над земной поверхностью. На этих высотах плотность воздуха весьма мала и воздух ионизирован, т. е. имеется большое число свободных электронов. Присутствие свободных электронов существенно влияет на электрические свойства ионосферы и обусловливает возможность отражения от ионосферы  радиоволн длиннее 10 м. Радиоволны, распространяю­щиеся путем отражении от ионосферы или рассеяния в ней, называют ионосферными волнами 3. На условия распространения ионосферных волн свойства земной поверх­ности и тропосферы влияют мало.


     Условия распространения радиоволн 4,5 при космической радиосвязи обладают не­которыми специфическими особенностями, а на радиоволны


 














Рис. 1.1. Пути распространения радиоволн








 










 


Рис. 1.2. Диаграммы направленности антенны по

мощности:

1 – изотропного излучателя; 2 – направленной

антенны








4 основное влияние ока­зывает атмосфера Земли.



     1.1. Формула идеальной радиопередачи


     Свободное пространство можно рас­сматривать как однородную непоглощающую среду с ε =1. В действительности та­ких сред не существует, однако выражения, описывающие условия распространения ра­диоволн в этом простейшем случае, являют­ся фундаментальными. Распространение ра­диоволн в более сложных случаях характе­ризуется теми же выражениями с внесением в них множителей, учитывающих влияние конкретных условий распространения.


     Для проектирования различных радио­систем необходимо определять напряжен­ность электрического поля радиоволны в месте приема или мощность на входе при­емного устройства.


     Для свободного пространства плотность энергии П (Вт/м2) на расстоянии r (м) от точечного источника, излучающего радио­волны равномерно во всех направлениях, связана с мощностью, излучаемой этим ис­точником Ризл (Вт) следующей зависи­мостью:

     ,

     где П – модуль вектора Пойнтинга.


     На практике антенна излучает энергию по разным направлениям неравномерно. Для учета степени неравномерности излучения вводят коэффициент направленного дейст­вия антенны.


     Коэффициент направленного действия антенны D показывает, во сколько раз изменяется плотность мощности на данном расстоянии от излучателя при направленном излучателе по сравнению с ненаправленным (изотропным) излуча­телем.


     При использовании направленного из­лучателя происходит пространственное пе­рераспределение мощности, в результате че­го в некоторых   направлениях    плотность          мощности повышается, а в других снижа­ется по сравнению со случаем использования изотропного излучателя. Применение на­правленных антенн позволяет получить в D раз большую плотность мощности в точке приема или в D раз снизить мощность передатчика. 


     Величина D является функцией углов на­блюдения: в горизонтальной плоскости ξ и в  вертикальной q (рис 1.2). Обычно антенна создает максимальное излучение лишь в не­котором направлении (ξ0 θ0), для которого D приобретает максимальное значение Dмакс=D(ξ0 θ0). Зависимость величин D от углов ξ и θ называют диаграммой направленности антенны по мощно­сти, а отношение F2(ξ,θ)= D(ξ θ)/Dмакс

- нормированной диаграммой направленности по мощности (рис.1.2).


      Плотность   мощности   на   расстоянии   r от направленной излучающей антенны


.


      Амплитуда напряженности электрического поля радиоволны в свободном пространстве связана с плотностью энергии этой волны (через сопротивление свободного пространства Z0)

E2m cв =2Z0 П = 240p П,

 

откуда определяется амплитудное значение напряженности электрического  поля   в свободном пространстве Еm cв (В/м) на задан­ном расстоянии r (м) от излучателя:      


                                                               (1.1)


     Мощность на входе приемника, согла­сованного с антенной, находящейся на   рас­стоянии r от излучателя,


                           ,                              (1.2)

где 


      —  эффективная площадь приемной антен­ны, характеризующая площадь фронта волны, из которой антенна извлекает энергию.


     Мощность Рпр.св удобно определять не­посредственно через мощность Pизл и вели­чину Dизл излучающей антенны:


.                          (1.3)         

Это выражение называется формулой идеальной радиопередачи.


     Ослабление мощности при распростра­нении радиоволн в свободном пространстве, определяемое как отношение Рпр.св / Pизл, называют  потерями передачи    в свободном пространстве. При ненаправлен­ных передающей и приемной антеннах это отношение  B0 (дБ)   рассчитывают  по  формуле:

 

                            ,        (1.4)


где  Р — мощность, Вт;  r — расстояние, км; ƒ — частота, МГц.


     Применение направленных антенн эквивалентно увеличению излучаемой мощности в  раз.

        

     Напомним, что поляризация радиоволн определяется ориентировкой     вектора напряженности электрического поля    радиовол­ны в пространстве, причем направление век­тора   определяет   направление   поляризации [2].В зависимости от изменения направления вектора    поляри­зация может быть линейной, круговой и эллиптической. Вид поляризации радиоволн в свободном про­странстве определяется типом излучателя (антенны). Например, антенна-вибратор излучает в сво­бодном пространстве линейно поляризован­ную волну.


     Для получения    волн    с   круговой    поляризацией достаточно   иметь   в   качестве   передающей антенны  два   линейных  вибратора,  смещен­ных в пространстве на 90° один относитель­но другого и питать их токами равной амп­литуды со сдвигом по фазе на 90°. Радио­волны   с   круговой   поляризацией   излучают, например, спиральная и турникетная антен­ны. Подобный вид   поляризации   находит широкое применение в телевидении и радио­локации.


     Эллиптически поляризованная волна может быть создана, например, с по­мощью антенн, в виде двух скрещенных вибраторов, плечи которых питают токами с разной амплитудой.


     Для эффективного приема характер по­ляризации поля принимаемой волны и поля­ризационные    свойства   приемной   антенны должны совпадать. Формулы (1.2) и (1.3) справедливы в случае совпадения характера и направления поляризации электрического поля и приемной антенны. Если совпадение отсутствует, мощность в приемной антенне уменьшается и в указанные формулы вво­дят поправки. Например, для наиболее эффективного приема волны с ли­нейной поляризацией вибратор приемной антенны должен быть ориентирован парал­лельно вектору . Если направление векто­ра   перпендикулярно оси приемного вибра­тора, то приема не будет.



1.2. Область пространства, существенная при распространении                     радиоволн. Метод зон Френеля


      На формирование поля вблизи прием­ной антенны В (рис. 1.3,а) различные области свободного пространства, через которое проходят радиоволны от излучателя A, влияют в разной степени. Излучатель создает сферическую волну, каждый элемент фронта которой вновь является источником сферической волны. Новая волновая поверх­ность находится как огибающая вторичных сферических волн. Поле на некотором  расстоянии от излучателя определяется суммар­ным действием вторичных источников. Ос­новной вклад в эту сумму дают источники,
расположенные  вблизи  прямой  А В.  Действие вторичных смежных излучателей, рас­положенных на значительном расстоянии от этой прямой, взаимно компенсируется.


     Областью, существенной при распро­странении радиоволн, называют часть про­странства, в котором распространяется основная доля энергии. Неоднородности сре­ды  (например, препятствия на пути волны) влияют на характеристики поля в точке приема, если они охвачены областью, суще­ственной при распространении. Эта область имеет конфигурацию эллипсоида вращения с фокусами в точках А и В (рис.1.3,б). Радиус поперечного сечения эллипсоида  на расстоянии  от точки A и расстоянии r0 от точки B определяется равенством:                   

rn+ rn=r0+ r0+n (l/2)

и может быть вычислен из уравнения                                                                                                                                                                                                           ,

где  - целое число.


     Кольцевую область, построенную на плоскости S, перпендикулярной линии АВ, с радиусами Rn называют зоной  Френеля  номера  n           (рис. 1.3, в).

     Если   на   пути   распространения   волны помещен экран с круглым отверстием  (пло­скость экрана перпендикулярна линии АВ), то  при  изменении  радиуса  отверстия   (или перемещении экрана  вдоль трассы)   напря­женность поля в точке В будет периодиче­ски  изменяться   (рис.1.4).

 














Рис. 1.3. К определению зон Френеля

а– формирование волнового фронта; б – к определению

размеров зон Френеля и конфигурация 1-й зоны вдоль трассы;

в - проекция зон Френеля на плоскость, перпендикулярную к направлению трассы

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.