Получаем в качестве модели варикапа ёмкость,
управляемую напряжением, с параллельно и последовательно включёнными паразитной
ёмкостью и индуктивностью. Зависимость ёмкости от напряжения выражается
следующей функцией:
где СВ.НОМ – ёмкость варикапа,
приведённая в справочнике при напряжении смещения ЕВ.НОМ;
jк – контактная разность потенциалов для кремниевого варикапа равна 0,65.
m – коэффициент степени (для сплавных m=0.5, для диффузионных m=0.3)
Математическая модель отражателя - модулятора
необходима для моделирования этого устройства с помощью вычислительной техники.
Предполагается, что все элементы математической модели будут представлены как
совокупность элементарных пассивных элементов с постоянными или переменными
параметрами. Эта модель позволит анализировать параметры отражателя –
модулятора с помощью специальных программных продуктов, предназначенных для
расчёта электрических цепей и схем.
Основной задачей моделирования является создание
схемного аналога вибратора – антенны отражателя - модулятора, поскольку этот
элемент устройства имеет большой разброс параметров для различных частот, а нам
необходима общая модель для всего рабочего диапазона частот, который имеет
коэффициент перекрытия три и более. Поэтому, разработке модели именно вибратора
в данном разделе будет уделено особое внимание, поскольку задача является
далеко не тривиальной, кроме того аналогичной задачи не рассматривалось ни в
одной книге, просмотреной в ходе подготовке к дипломной работе. Разработанный
мною метод моделирования может с успехом применяться для моделирования и других
цепей, поскольку в ходе моделирования был использован общий подход.
Как было сказано выше, нам необходимо рассмотреть
два случая, когда в закладке используется полупроводниковый диод и когда
используется варикап. Использование этих двух элементов в устройстве даёт
различные цепи согласования вибратора с самим модулятором. Ниже на рисунках
представлены три эквивалентные цепные схемы для двух этих случаев.
Рис. 3.1. Эквивалентная схема отражателя -
модулятора с использованием диода.
где
Е1 – источник высокочастотных колебаний, навязанных зондирующим сигналом;
ЕСМ – источник смещения (устанавливает рабочую точку диода);
UМОД – источник модулирующего напряжения;
Д1 – полупроводниковый диод;
ССОГЛ – ёмкость, компенсирующая реактивное сопротивление вибратора;
LСОГЛ – блокировочная или согласующая индуктивность, блокирует шунтирование
высокочастотного сигнала через источник смещения и модуляции, или компенсирует
ёмкостную составляющую (назначение в зависимости от схемы);
ZВХ(p) – эквивалентное сопротивление вибратора (его эквивалентная схема как
двухполюсника);
Рис. 3.2. Эквивалентная схема отражателя -
модулятора с использованием варикапа (RСОГЛ параллельно Д1).
Рис. 3.3. Эквивалентная схема отражателя -
модулятора с использованием варикапа (RСОГЛ последовательно Д1).
На рис 3.2 и рис.3.3 RСОГЛ
нужно для введения активного сопротивления, в полное сопротивление модулирующей
части, это позволит согласовать модулирующую часть с вибратором на частоте
зондирующего сигнала (RСОГЛ выбирают равной активной
составляющей вибратора на частоте зондирующего сигнала).
Видно, что единственным неизвестным квадратом в
нашей схеме является эквивалент вибратора, приступим к его разработке и
моделированию.
Как было сказано выше, математическую модель
вибратора будем разрабатывать в виде электрической цепи. Поэтому сразу же
накладывается требование положительности и вещественности схемной функции (в
нашем случае входное сопротивление), которую мы будем строить для вибратора.
Вначале мы посмотрим на экспериментальные графики
входного сопротивления вибратора, исходя из которых, выведем основные свойства
для входного сопротивления вибратора. Далее, пользуясь теоретическими данными
для схемных функций электрических цепей, построим функцию входного
сопротивления вибратора, пользуясь этой функцией, проведём моделирование с
помощью ЭВМ. Кроме того, покажем некоторый эвристический метод синтеза RLC –
двухполюсников по известной схемной функции.
Из курса «Теория
радиотехнических сигналов и цепей» известно, что RLC – двухполюсник имеет
схемную функцию в виде рациональной дроби, степень знаменателя и числителя
которой отличаются, не более чем на единицу, иначе импульсная характеристика
цепи будет стремиться в бесконечность при конечной мощности входного
воздействия. Кроме того, функция входного сопротивления или проводимости RLC –
цепи имеет в числителе и знаменателе все степени. В некоторых случаях, когда
полное сопротивление в нуле стремиться к нулю или бесконечности, может
отсутствовать нулевая степень, т.е. нулевой коэффициент равен нулю.
Ниже на рис. 3.4
приведены экспериментальные графики для входного сопротивления вибратора [4].
На верхнем графике рисунка приведены зависимости активной части входного
сопротивления от отношения длины вибратора к длине волны. Эта зависимость
пропорциональна зависимости сопротивления от частоты при постоянной длине
вибратора (частота обратно пропорциональна длине волны). На нижнем графике
рисунка видим зависимость реактивной части сопротивления от частоты. Заметим,
что на нулевой частоте (l=¥) значение реактивной составляющей стремится в “минус” бесконечность,
значит, у нас в знаменателе полного сопротивления отсутствует нулевая степень.
Рис 3.4. Зависимость входного сопротивления
симметричного вибратора от его длины при различном волновом сопротивлении
вибратора (см. главу 2.2): кривая 1 – для WB1; кривая 2 – для
WB2 , где WB1 > WB2 .
Видим, что первым на оси часто стоит
последовательный резонанс, затем параллельный и т.д., т.е. вибратор обладает
таким свойством RLC – цепи, как чередование нулей и полюсов. Понятие «полюс», в
данном случае, подразумевает наличие параллельного резонанса, хотя реактивная
составляющая и равна нулю на этой частоте (это связано с наличием потерь в
вибраторе на излучение). Так как вибратор обладает свойством чередования нулей
и полюсов, то мы можем записать схемную функцию RLC – цепи и, подбором
коэффициентов её полиномов числителя и знаменателя, добиться приближения её
параметров на частотах кратных частоте зондирующего сигнал к параметрам
вибратора.
В дипломной работе рассматривается работа
вибратора до третей гармоники зондирующего сигнала. По условию задачи, для
частоты зондирующего сигнала вибратор является полуволновым, т.е. на частоте
зондирующего сигнала работа вибратора аналогична работе последовательного
контура, отсюда работа вибратора на второй и третей гармонике облучающего
сигнала аналогична работе параллельного и последовательного контура
соответственно.
Исходя из выше сказанного, делаем вывод, что наша
схемная функция имеет два «нуля» на комплексной плоскости (плюс ещё два из-за
комплексной сопряжённости, причём каждый нуль имеет вид: ((p-a)2+b2)),
один «полюс» на комплексной плоскости и один «полюс» в нуле. Под «полюсом» на
комплексной плоскости понимается наличие параллельного резонанса (системная
функция в этой точке имеет конечное значение), под «нулём» - наличие
последовательного резонанса.
Следовательно, требуемая схемная функция будет
иметь в числителе полином четвёртого порядка, а в знаменателе полином третьего
порядка, у которого будет отсутствовать свободный член.
В предыдущем подразделе мы выяснили, какой вид должна
иметь схемная функция RLC – двухполюсника, имеющей два последовательных
резонанса, один параллельный, и в нуле эквивалентна ёмкости:
, (3.1)
Получили восемь неизвестных коэффициентов,
которые необходимо найти. Кроме того, можно показать, что любой RLC –
двухполюсник, не имеющий перекрёстных связей, имеет функцию сопротивления или
проводимости вида (3.1), у которой коэффициенты a0=b0=1.
Отсюда, имеем шесть неизвестных коэффициентов, для нахождения которых нам потребуется
шесть уравнений. Предложим следующий вариант системы уравнений, из которой
можно найти коэффициенты (3.1).
Найдём активные и реактивные составляющие
сопротивления (3.1) на трёх гармониках и при равняем их составляющим
сопротивления вибратора на этих же гармониках. Получается, что мы провели
кривую, заданную выражением (3.1), через три точки полного сопротивления
вибратора. Эти точки возьмём на частотах кратных частоте облучающего сигнала.
Таким образом, мы гарантировано имеем те же значения сопротивления (3.1) на
требуемых частотах.
Нахождение коэффициентов схемной функции
проводилось с использованием математического пакета MathCAD 7.0 Profeessional.
Этот программный продукт имеет широкие возможности аналитической математики (в
MathCAD она называется символьной), которая позволяет решать системы уравнений
аналитическим путём, т.е. выдаёт конкретную формулу для нахождения переменной.
В ПРИЛОЖЕНИИ 1 приводятся формулы, которые были
получены при помощи MathCAD, конечно же, они на первый взгляд выглядят
громоздкими, но зато позволяют нам найти коэффициенты для любой совокупности
реактивных и активных составляющих, не прибегая к численным методам.
Более того, эти формулы можно использовать для
моделирования вибратора при помощи пользовательских программ, что является
огромным «плюсом» в области исследований.
Ниже будет рассказано о том, как формулы для
нахождения коэффициентов полинома использовались для моделирования всего
отражателя – модулятора.
Пока не существует канонического метода для
синтеза эквивалентной электрической RLC-цепи по заданной схемной функции
(полного входного сопротивления в нашем случае) без использования «идеального»
трансформатора, поэтому мною предложен следующий «эвристический» метод синтеза
схемного эквивалента вибратора. Идея метода заключена в том, чтобы
последовательно в «бесконечности» выделять эквивалентное RL-сопротивление или
RC-проводимость, при проведении этой процедуры получается разложение схемной функции
цепи в цепную дробь. Таким образом, получаем лестничную цепь, у которой в
продольных «ветвях» находятся индуктивность и сопротивление, в поперечных –
ёмкость и проводимость. Ещё раз хочу отметить, что подобный подход строго не
обоснован с точки зрения математики, а является эвристическим. Автору пришлось
просидеть не мало часов за листами бумаги, рисуя различные схемы, выводя их
схемные функции, синтезируя их этим методом, и, потом, у полученных схем снова
выводить выражение для полного сопротивления. И ни разу этот метод не подвёл,
т.е. всегда синтезированные схемы имели положительные номиналы элементов.
Впрочем, для моделирования при помощи ЭВМ не требуется положительность этих
номиналов, это требуется только при натурном моделировании, и то, в некоторых
случаях, отрицательные параметры элементов удаётся реализовать при помощи
специальных устройств. Для доказательства справедливости этого метода,
необходимо показать, что при условии положительности и вещественности исходной
схемной функции, она раскладывается в цепную дробь, причём на каждом шаге мы
получаем полином первой степени с положительными коэффициентами и рациональную
дробь, обладающую свойством положительности вещественности. При моделировании
на компьютере, если графики активного и реактивного сопротивления модели
вибратора качественно были такими же, что и экспериментальные, то
синтезированная цепь имела положительные номиналы своих элементов.
Из рис. 3.1 – 3.3 видно, что модулирующая часть
состоит в общем случае из RСОГЛ, LСОГЛ, CСОГЛ, источников смещения и
модулирующего напряжения и нелинейного элемента.
Все эти элементы легко реализуются при помощи
ЭВМ, и не представляется особой сложности для составления их дискретной модели.
Параметры же нелинейных элементов вычисляются в конце шага, в соответствии с
выражениями, приведёнными в главе 2.4 и 2.5, и на протяжении всего следующего
шага считаются постоянными.
При переходе от непрерывной модели элементов к
дискретной использовался метод Тастина, с которым можно познакомиться в [2], [6] и [9],
причём согласующая ёмкость была введена в модель вибратора. Коэффициенты
схемной дискретной функции для реализации этого метода были получены при помощи
математического пакета MathCAD 7.0 Professional.
Для нахождения параметров модуляции нам
необходимо знать ток в эквиваленте симметричного вибратора. Для этого мы должны
определить напряжение на нелинейном элементе, затем, зная разность потенциалов,
приложенную к зажимам модели вибратора, мы можем определить ток в ней. Для
этого реализуем следующую схему работы алгоритма моделирования:
q на первом шаге напряжение на нелинейном элементе приравниваем
напряжению смещения;
Страницы: 1, 2, 3, 4, 5
|