Кроме того, при работе катода
имеет место миграция активного вещества (бария с оксидного катода) на
поверхность фокусирующего электрода, что приводит к появлению паразитного тока
электронной эмиссии с поверхности нагретого прикатодного электрода. Паразитный
эмиссионный ток может существенно исказить распределение потенциала в
прикатодной области и как следствие привести к заметному изменению условий
формирования пучка.
Поэтому в практических
конструкциях пушек между кромкой катода и краем фокусирующего электрода обязательно
должен быть хотя бы небольшой кольцевой зазор. Здесь возможно два конструктивных
решения. При достаточно большом катоде отверстие в прикатодном электроде
делается с радиусом, превышающим радиус катода на ширину зазора (рис. 6-а).
Рис. 13. Конструкции прикатодных
электродов
В случае же малых катодов, когда
для размещения подогревателя необходима полость с диаметром, превышающим
диаметр эмиттирующей части катода, фокусирующий электрод располагается перед
катодом. В обоих случаях поле вблизи зазора искажается, эквипотенциальные
поверхности «провисают» в зазор. Это «провисание» поля приводит к искривлению
траекторий электронов, испускаемых периферийной частью катода.
Возмущение крайних траекторий
полем зазора является очень нежелательным явлением, так как именно крайние
электроны определяют конфигурацию пучка и оседание части электронного потока на
электроды фокусирующей системы. Искажение поля вблизи зазора зависит не только
от ширины самого зазора, но также от формы краев катода и фокусирующего
электрода. Технологические скругления кромок приводят к увеличению
«провисания» поля и возмущению большей доли электронов.
Расчет показывает, что при
ширине зазора 0,1 мм и радиусе скругления кромки катода того же
порядка доля возмущенных электронов может составить 10—15% от общего
электронного потока, уходящего с катода. Таким образом, при проектировании
пушек необходимо стремиться к уменьшению ширины зазора и делать кромки
электродов возможно более острыми.
Некоторое снижение доли
возмущенных электронов удается получить путем подведения к фокусирующему
электроду небольшого отрицательного относительно катода коррегирующего
напряжения. В этом случае у краев катода создается тормозящее поле,
препятствующее уходу электронов с краев катода. Конечно, при этом несколько
уменьшается общий ток пучка, однако регулировкой коррегирующего напряжения
удается заметно уменьшить оседание электронов на положительно заряженные
электроды системы формирования.
При использовании пушки,
формирующей цилиндрический пучок, для компенсации этих ускорений требуется
увеличение магнитной индукции ограничивающей системы, но и в этом случае
амплитуды пульсаций будут большими. Если же пушка формирует сходящийся пучок,
то действие анодной линзы приводит к уменьшению приобретенных в поле пушки
радиальных ускорений, направленных в сторону оси.
Соответствующим подбором формы
анодного электрода можно получить по выходе из анодного отверстия практически
параллельный поток, т. е. свести к минимуму радиальные ускорения электронов, а
следовательно, и амплитуду пульсаций границы пучка в заанодном пространстве. И,
наконец, в пушках со сходящимся пучком бомбардировке положительными ионами,
образующимися вблизи анодного отверстия, подвергается лишь небольшая
центральная часть поверхности катода, что также уменьшает преждевременный износ
катода.
3.2. Формирование параллельного цилиндрического пучка.
Задача формирования параллельного
цилиндрического пучка решается аналогично рассмотренной выше задаче
формирования параллельного ленточного пучка, с той лишь разницей, что из
бесконечного параллельного потока «вырезается» область в виде цилиндра
Рис. 14. Электронная пушка для
формирования параллельного
аксиальносимметричного пучка
Для определения формы фокусирующих
электродов решается внешняя задача при следующих начальных условиях, заданных
на границе области: U = Uа (z/d)4/3, dU/dr =
0.
Картина эквипотенциальных линий приведена
на рис. 15.
Рис. 15. Карта эквипотенциален
для расчета формы электродов пушки, формирующей параллельный
аксиальносимметричный пучок
Первеанс такой пушки
определяется соотношением, вытекающим из закона степени 3/2:
где rк — радиус катода, равный радиусу пучка (rк = rп), d — расстояние катод—анод, Ua — анодное напряжение, I — ток пучка.
Расфокусирующее действие
анодного отверстия в рассматриваемой пушке можно приближенно учесть, если исходить из
предположения, что оно
эквивалентно действию линзы-диафрагмы, фокусное расстояние которой
.
Тогда угол наклона электронных траекторий
на выходе из пушки определяется формулой:
a ≈ tg a =
Если сюда подставить значение d, найденное из (15), то получим
где Р —
первеанс, мка/в .
4. Современное
применение пушек для создания интенсивных электронных пучков
Электронно-лучевые
трубки для дисплеев
Сегодня самый распространенный тип мониторов - это CRT (Cathode Ray
Tube) мониторы. Как видно из названия, в основе всех подобных мониторов лежит
катодно-лучевая трубка, но это дословный перевод, технически правильно говорить
электронно-лучевая трубка (ЭЛТ). Иногда CRT расшифровывается и как Cathode Ray
Terminal, что соответствует уже не самой трубке, а устройству, на ней
основанному.
Используемая в этом типе мониторов технология была разработана немецким ученым
Фердинандом Брауном в 1897г. и первоначально создавалась в качестве
специального инструмента для измерения переменного тока, то есть для
осциллографа.
Электронно-лучевая трубка (кинескоп)
предназначена для воспроизведения изображения. Для создания изображения в
ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного
электростатического поля исходит поток электронов. Сквозь металлическую маску
или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора,
которая покрыта разноцветными люминофорными точками.
Поток электронов (луч) может отклоняться в
вертикальной и горизонтальной плоскости, что обеспечивает последовательное
попадание его на все поле экрана. Отклонение луча происходит посредством
отклоняющей системы.
Как правило, в цветном мониторе используется
три электронные пушки, в отличие от одной пушки, применяемой в монохромных
мониторах, которые сейчас практически не производятся.
Корпорация Sony, в состав которой входят около полутора тысяч фирм, по
праву считается лидером ИТ-индустрии. Компания изготавливает много видов
электронной техники и отдельных компонентов, и одним из важных направлений ее
деятельности является производство дисплеев для ЭВМ.
Все ЭЛТ-дисплеи Sony производятся с трубкой FD Trinitron. Технология FD
Trinitron была представлена компанией Sony в 1998 году. Создав
электронно-лучевую трубку с практически плоской поверхностью экрана, обладающую
в то же время максимально выгнутой внутренней поверхностью, Sony удалось
добиться эффекта визуально плоского изображения. Другие фирменные компоненты
ЭЛТ также способствуют воспроизведению монитором насыщенного и детального
изображения.
Применяемые в ЭЛТ FD Trinitron электронные пушки SAGIC и L-SAGIC
(Low Voltage — Small Aperture Grille with Impregnated Cathode) —
сверхузкоапертурные, с легированным катодом, формируют очень узкий луч с
повышенной плотностью. В FD Trinitron применена конструкция электронной пушки
под названием SAGIC (Small Aperture G1 with Impregnated Cathode). В ней
используется привычный бариевый катод, но обогащенный вольфрамом, что позволяет
продлить срок службы ЭЛТ. Кроме того, диаметр фильтрующего отверстия в первом
элементе решетки электронной пушки G1 уменьшен до 0,3 мм по сравнению с обычными 0,4 мм, что позволяет получать на выходе более тонкий электронный луч.
L-SAGIC — это более новая версия пушки, с
пониженным энергопотреблением. Учитывается и то, что в ходе эксплуатации
компоненты трубки изнашиваются. Например, по мере старения катода напряженность
и ток электронного луча падают. В ЭЛТ FD Trinitron специальный BSF-датчик
учитывает этот эффект, и система обратной связи повышает ток луча, обеспечивая
сохранение яркости экрана.
Новая L-SAGIC электронная пушка обеспечивает самое маленькое и
абсолютно круглое световое пятно по всему экрану. Понять насколько революционна
новая технология можно, проследив путь, по которому прошли конструкторы. Была
поставлена задача повысить четкость изображения, яркость и контрастность. Для
обеспечения высокой четкости изображения необходимо было уменьшить размер
пятна, для чего в свою необходимо было сделать луч тоньше и уменьшить шаг
апертурной решетки. Итак, что касается пушки, необходимо было сделать ее более
узконаправленной.
Возникла проблема - упала энергия пучка, то есть яркость формируемой
точки. Как сохранить яркость? Увеличить интенсивность пучка, повысив
напряжение, подаваемое на катод и ток накаливания. Но этого оказалось
недостаточно. Тогда был разработан новый катод с повышенным содержанием бария,
более активного эмитента. Конструкторы добились необходимой интенсивности, но
возникла проблема с долговечностью. Рыхлый катод быстро разрушался.
В следующей разработке были добавлены тугоплавкие присадки,
препятствующие разрушению. Более того, для обеспечения стабильности
характеристик на протяжении всего срока жизни монитора в моделях серии F на
внутренней поверхности экрана установлены сенсоры, следящие за тем, чтобы
монитор не "садился" и его характеристики не изменялись на протяжении
всего срока службы.
Корпорация PANASONIC является крупнейшим производителем ЭЛТ-дисплеев и
конкурентом фирмы Sony.
В ЭЛТ-дисплеях корпорации PANASONIC используются следующие электронные
пушки:
Электронная пушка MPF. Вместо одной
электростатической 4-полюсной линзы в электронной пушке MPF встроено три. В
результате лучше корректируется сечение электронного луча, который попадает на
главную линзу. Это способствует повышению точности фокусировки на 15% по
сравнению с точностью прежних видов пушки.
Электронная пушка DAF. Состоит из двух
квадрополюсных объективов (объектив, выправляющий искажения в углах и по краям
экрана, - это не есть фирменная разработка Panasonic, его многие применяют) и
одного длиннофокусного объектива LOLF (большое перекрытие поля зрения).
Способствует увеличению четкости и обеспечивает правильную геометрию
изображения без искажений по углам и краям экрана.
Компания LG входит в число самых крупных мировых производителей
электроники. Компания была основана 1 октября 1958 г. Основной продукцией компании LG является производство мониторов, плазменных дисплеев,
компьютеров, кинескопов.
В ЭЛТ-дисплеях LG Flatron компании LG Electronics используется
электронная пушка специальной конструкциии - Hi-Lb-MQ Gun. В обычных пушках по
краям экрана электронное пятно имеет овальную форму. Это ведет к появлению
муара и снижению горизонтального разрешения. Примененная же в Hi-Lb-MQ Gun
система фокусировки позволяет добиваться практически идеальной формы
электронного пятна по всей поверхности экрана. В конструкцию решетки
электронной пушки также внесены изменения - добавлен дополнительный фильтрующий
элемент G3.
Плавка
Применение
тугоплавких металлов приобретает все возрастающее значение в развитии науки и
техники - атомной энергетике, авиационной и ракетной технике, химической
промышленности и многих других. За последние десятилетия в технологии редких и
тугоплавких металлов получили широкое распространение методы плавления в
вакуумных электропечах разнообразной конструкции - индукционных, дуговых, электронно-лучевых.
В институте
Гиредмет разработан и нашел промышленное применение способ получения ниобия,
тантала и других тугоплавких металлов восстановлением их пятиокисей алюминием,
так называемый алюминотермический метод восстановления с последующей вакуумной
плавкой. В 1998 - 1999 годах была создана электронно-лучевая установка для
плавки ниобия и других тугоплавких металлов, полученных методом алюминотермического
восстановления.
Установка
работает следующим образом: исходный материал - дробленые куски
ниобий-алюминиевого сплава в количестве 55-65 кг, загружается в ванну медного водоохлаждаемого кристаллизатора и после электронно-лучевого переплава
получается плоский слиток - полуфабрикат с размерами 20х200х2000 мм, пригодный
для дальнейшей переработки. На установке применяется электронная двухкаскадная
пушка аксиального типа. Танталовый катод разогревается электронной
бомбардировкой от разогретой вольфрамовой спирали - первый каскад. Образующийся
пучок электронов разгоняется в катод-анодном промежутке напряжением второго
каскада и направляется на исходный материал, находящийся в кристаллизаторе.
Лучеводы
электронной пушки снабжены фокусирующими магнитными линзами, системой
управления электронного пучка.
Камера пушки имеет
поперечный вакуумный затвор, позволяющий отсекать ее объем от рабочего объема
установки. Откачка объема пушки производится отдельной вакуумной системой.
Высоковольтная часть пушки закрыта защитным кожухом с блокировкой. В
конструкции установки предусмотрена блокировка по высокому напряжению в случае
ухудшения вакуума в рабочем объеме. С помощью автоматической системы управления
электронный пучок в процессе плавки сканирует в пределах ширины ванны
кристаллизатора, а сам кристаллизатор перемещается в продольном направлении со
скоростью 8 - 30 мм/мин с помощью электромеханического привода.
Сварка
Классификация
технологических приемов сварки и ремонта швов электронным пучком. По степени
изученности и применяемости известные технологические приемы сварки можно
разделить на три группы.
К первой относятся
наиболее изученные и широко применяемые в промышленности приемы: развертка и
наклон электронного пучка; модуляция тока электронного пучка; подача
присадочного материала; применение подкладок; сварка смещенным и расщепленным
электронным пучком; выполнение прихваток, предварительных и "косметических"
проходов; сварка секциями.
Вторая группа
включает приемы, хорошо изученные в лабораторных условиях, но не получившие
пока практического применения: "тандемная" сварка; сварка в узкий
зазор; сварка "пробковыми" швами.
В третью группу
входят приемы, целесообразность или возможность реализации которых недостаточно
обоснована: оплавление корневой части шва "проникающим" электронным
пучком; осцилляция уровня фокусировки электронного пучка; применение флюсов;
сварка с использованием широкой вставки; сварка с дополнительным теплоотводом;
двухсторонняя сварка; вибрация свариваемого изделия; ввод ультразвуковых
колебаний в сварочную ванну.
По типам физического воздействия
технологические приемы делят на четыре группы: управление
пространственно-энергетическими параметрами электронного пучка (периодическое и
статическое отклонение, модуляция токов электронного пучка и фокусирующей
линзы); применение дополнительных конструктивных элементов и материалов (подкладки,
вставки, накладки, наплавки, теплоотводящие элементы, присадки, флюсы);
специальные сварные швы (дополнительные проходы, прерывистые швы, дополняющие
швы); механическое воздействие на сварочную ванну (вибрация изделия, ввод
ультразвуковых колебаний).
На основе серийной
электронно-оптической сварочной системы (ЭОСС-2) создана электронная пушка для
ЛУЭ на энергию 42 кэВ и током 800 мА.
В линейных
ускорителях электронов (ЛУЭ) для прикладных целей существует несколько
критических узлов, определяющих время непрерывной работы ускорителя и его
надежность. К таким узлам, наряду с вакуумными окнами и мишенями, относится и
катодный узел электронной пушки с термокатодом. Выход катодного узла из строя
связан с потерей эмиссии катодом («отравление» или разрушение катода) и с
разрушением системы нагрева катода.
Массивные катоды на
основе боридов металлов обладают большой стойкостью к режимам «отравления» и
легко активируются, но работают при высокой температуре
(Тк ~ 1600 °С) [1]. Использование катодов из гексаборида лантана (LaB6)
позволяет свести задачу по созданию надежного катодного узла для ЛУЭ к решению
задачи создания надежной системы подогрева этих катодов.
Опыт работы РУЦ МИФИ
по созданию электронных пушек на основе катодов из LaB6 с подогревом их электронной
бомбардировкой показывает, что прямонакальный вспомогательный катод в схеме
электронной бомбардировки выходит из строя из-за перегрева под влиянием
теплового излучения с основного катода и из-за распыления под воздействием
ионной бомбардировки ионами остаточного газа и продуктов испарения основного
катода.
Для уменьшения
влияния этих факторов была разработана система подогрева основного катода из
LaB6 электронной бомбардировкой со вспомогательного гексаборидлантанного
катода, который, в свою очередь, имеет встроенный нагреватель. В качестве
вспомогательного катода была использована серийная электронно-оптическая
сварочная система (ЭОСС-2) с катодом диаметром 2 мм. При мощности накала Рн = 150 Вт (Uн = = 15 В, Iн = 10 А), ток эмиссии
катода составляет 200 мА. Основной катод катодного узла – таблетка из LaB6
диаметром 4,2 м. Рабочая температура основного катода Тк = 1650 °С была достигнута при мощности
электронной бомбардировки Рб = 17 Вт (Uб = 700 В, Iб = 24,3 мА) и мощности
накала подогревателя Рн = 55 Вт (Iн = 7,5 А, Uн = 7,3 В). При таком режиме
нагрева катода расчетная долговечность катодного узла, определяемая временем
жизни нити накала подогревателя, составляет не менее 3000 ч.
На основе
разработанного катодного узла была создана электронная пушка для ЛУЭ с оптикой
Пирса. При анодном напряжении Uа = 42 кВ был получен электронный пучок
диаметром 3 мм на расстоянии 30 мм от плоскости анода и током 800 мА.
5. Заключение
При помощи пушки Пирса с
цилиндрическим (параллельным) потоком можно сформировать пучок радиуса,
примерно равного радиусу эмиттирующей поверхности катода. При этом плотность
тока в пучке принципиально не может быть больше удельной эмиссии катода.
Учитывая ограниченность последней, можно сделать вывод о целесообразности
использования таких систем лишь для формирования сравнительно слаботочных
пучков. Чем меньше радиус пучка, тем меньше возможная величина тока.
Поскольку в современных
электронных приборах СВЧ-диапазона используются пучки с радиусами не более
нескольких миллиметров и токами от долей до десятков ампер при не очень высоких
ускоряющих напряжениях (р>1 мка/в3/2), плотность тока в пучке
оказывается существенно больше предельной величины удельной эмиссии технических
катодов. Поэтому большое распространение получили пушки с компрессией
электронного потока, т. е. формирующие сходящиеся электронные пучки. Величина
компрессии, т. е. отношение площади эмиттирующей поверхности катода к площади
поперечного сечения сформированного пучка, может достигать 100 и более.
Кроме уменьшения токовой
нагрузки катода и, следовательно, возможности получения пучка с большой
плотностью тока при удельной эмиссии катода, обеспечивающей достаточно большой
срок его службы, пушки с компрессией обладают некоторыми другими
преимуществами. Поведение пучка в пролетном пространстве за анодом пушки при
наличии ограничения однородным или периодическим полем в значительной мере
определяется начальными условиями ввода пучка в ограничивающую систему.
Чем меньше начальные радиальные
ускорения, тем меньше амплитуда пульсаций границы пучка. Для получения
приблизительно гладкого пучка в заанодном пространстве необходимо достаточно
точное выполнение начальных условий. Образующаяся вблизи анодного отверстия
рассеивающая линза приводит к появлению у крайних электронов пучка заметных радиальных
ускорений (в сторону от оси пучка).
Пушки Пирса получили
наибольшее распространение среди систем формирования интенсивных пучков. В их
конструкции реализованы системы формирования ленточных или
аксиально-симметричных электронных пучков и поперечно-ограничивающая система,
которые в зависимости от конструкции могут быть различными. Пушки Пирса -
яркий пример использования различных линз и теории движения электронов в
различных полях .
На базе пушек Пирса
в настоящее время создаются новейшие устройства для сварки, плавления и других
способов обработки материалов. Это направление всё более развивается.
Литература
1.
Жигарев А.А. Электронная
оптика и электронно-лучевые приборы. - М.: Высшая школа, 1972.
2.
Кацман Ю.А. Электронные лампы.
М.: Высшая школа, 1979.
3.
КирштейнП.Т., Кайно Г.С.,
Уотерс У.Е. Формирование электронных пучков. – М.: Мир, 1970.
4.
Молоковский С.И., Сушков
А.Д. Интенсивные электронные и ионные пучки. – Ленинградское отделение:
Энергия, 1972.
5.
Шерстнёв Л.Г. Электронная
оптика и электронно-лучевые приборы. - М.: Энергия, 1971.
6.
Данные о новейших
разработках взяты с сайта www.seo.ru
Страницы: 1, 2, 3
|