Меню
Поиск



рефераты скачать Отрывок из учебника по теории систем и системному анализу

p> Аксиома 2. Пространство состояний Z содержит не менее двух элементов.
Эта аксиома отражает естественное представление о том, что сложная система может находиться в разных состояниях.

Аксиома 3. Система обладает свойством функциональной эмерджентности .

Эмерджентностъ (целостность) - это такое свойство системы S, которое принципиально не сводится к сумме свойств элементов, составляющих систему, и не выводится из них:

т

1

где yt - i-я характеристика системы S; т - общее количество характеристик.

При таком рассмотрении система является совокупностью моделей и, главное, отражает семантику предметной области в отличие от неинтерпретированных частных математических моделей. Другими словами, система - это совокупность взаимосвязанных элементов, обладающая интегративными свойствами (эмерджентностью), а также способ отображения реальных объектов.

В рамках изучаемой дисциплины под сложной кибернетической системой понимается реальный объект с управлением и его отображение в сознании исследователя как совокупность моделей, адекватная решаемой задаче.

123 КЛАССИФИКАЦИЯ СИСТЕМ

Системы принято подразделять на физические и абстрактные, динамические и статические, простые и сложные, естественные и искусственные, с управлением и без управления, непрерывные и дискретные, детерминированные и стохастические, открытые и замкнутые.

Основы системного анализа

Деление систем на физические и абстрактные позволяет различать реальные системы (объекты, явления, процессы) и системы, являющиеся определенными отображениями (моделями) реальных объектов.

Для реальной системы может быть построено множество систем - моделей, различаемых по цели моделирования, по требуемой степени детализации и по другим признакам.

Например, реальная ЛВС, с точки зрения системного администратора, - совокупность программного, математического, информационного, лингвистического, технического и других видов обеспечения, с точки зрения противника, - совокупность объектов, подлежащих разведке, подавлению
(блокированию), уничтожению, с точки зрения технического обслуживания, - совокупность исправных и неисправных средств.

Деление систем на простые и сложные (большие) подчеркивает, что в системном анализе рассматриваются не любые, а именно сложные системы большого масштаба. При этом выделяют структурную и функциональную
(вычислительную) сложность.

Общепризнанной границы, разделяющей простые, большие и сложные системы, нет. Однако условно будем считать, что сложные системы характеризуются тремя основными признаками: свойством робастности, наличием неоднородных связей и эмерджентностью.

Во-первых, сложные системы обладают свойством робастности - способностью сохранять частичную работоспособность (эффективность) при отказе отдельных элементов или подсистем. Оно объясняется функциональной избыточностью сложной системы и проявляется в изменении степени деградации выполняемых функций, зависящей от глубины возмущающих воздействий. Простая система может находиться не более чем в двух состояниях: полной работоспособности
(исправном) и полного отказа (неисправном).

Во-вторых, в составе сложных систем кроме значительного количества элементов присутствуют многочисленные и разные по типу (неоднородные) связи между элементами. Основными типами считаются следующие виды связей: структурные (в том числе иерархические), функциональные, каузальные
(причинно-следственные, отношения истинности), информационные, пространственно-временные. По этому признаку будем отличать сложные

26

Глава 1

системы от больших систем, представляющих совокупность однородных элементов, объединенных связью одного типа.

В-третьих, сложные системы обладают свойством, которое отсутствует у любой из составляющих ее частей. Это интегратив-ность (целостность), или эмерджентность. Другими словами, отдельное рассмотрение каждого элемента не дает полного представления о сложной системе в целом. Эмерджентность может достигаться за счет обратных связей, играющих важнейшую роль в управлении сложной системой.

Считается, что структурная сложность системы должна быть пропорциональна объему информации, необходимой для ее описания (снятия неопределенности). В этом случае общее количество информации о системе S, в которой априорная вероятность появленияу'-ro свойства равна р(у), определяется известным соотношением для количества информации

I(Y) = -Ip(yj)log2p(yj). (1.6)

Это энтропийный подход к дескриптивной (описательной) сложности.

Одним из способов описания такой сложности является оценка числа элементов, входящих в систему (переменных, состояний, компонентов), и разнообразия взаимозависимостей между ними.

В общей теории систем утверждается, что не существует систем обработки данных, которые могли бы обработать более чем 2-10547 бит в секунду на грамм своей массы. При этом компьютерная система, имеющая массу, равную массе Земли, за период, равный примерно возрасту Земли, может обработать порядка 10593 бит информации (предел Бреммермана). Задачи, требующие обработки более чем 10593 бит, называются трансвычислительными. В практическом плане это означает, что, например, полный анализ системы из
110 переменных, каждая из которых может принимать 7 разных значений, является трансвычислительной задачей.

Для оценки сложности функционирования систем применяется алгоритмический подход. Он основан на определении ресурсов (время счета или используемая память), используемых в системе при решении некоторого класса задач.
Например, если функция времени вычислений является полиномиальной функцией от входных данных, то мы имеем дело с полиномиальным по вре-

Ф- ч)

0
Ч
^

Основы системного анализа

мени, или «легким» алгоритмом. В случае экспоненциального по времени алгоритма говорят о его «сложности». Алгоритмическая сложность изучается в теории NP-полных задач.

Сложные системы допустимо делить на искусственные и естественные
(природные).

Искусственные системы, как правило, отличаются от природных наличием определенных целей функционирования (назначением) и наличием управления.

Рассмотрим еще один важный признак классификации систем. Принято считать, что система с управлением, имеющая нетривиальный входной сигнал x(t) и выходной сигнал y(t), может рассматриваться как преобразователь информации, перерабатывающий поток информации (исходные данные) x(t) в поток информации (решение по управлению) y(t).

В соответствии с типом значений x(t), y(t), z(t) и t системы делятся на дискретные и непрерывные.

Такое деление проводится в целях выбора математического аппарата моделирования. Так, теория обыкновенных дифференциальных уравнений и уравнений в частных производных позволяет исследовать динамические системы с непрерывной переменной (ДСНП). С другой стороны, современная техника создает антропогенные динамические системы с дискретными событиями (ДСДС), не поддающиеся такому описанию. Изменения состояния этих систем происходят не непрерывно, а в дискретные моменты времени, по принципу «от события к событию». Математические (аналитические) модели заменяются на имитационные, дискретно-событийные: модели массового обслуживания, сети Петри, цепи
Маркова и др.

Примеры фазовых траекторий ДСДС и ДСНП показаны на рис. 1.3, а, б.

Для ДСДС траектория является кусочно-постоянной и формируется последовательностью событий и. Последовательность отрезков постоянства отражает последовательность состояний z системы, а длительность каждого отрезка отражает время пребывания системы в соответствующем состоянии. Под состоянием при этом понимается «физическое» состояние (например, число сообщений, ожидающих передачи в каждом узле обработки). Состояния принимают значения из дискретного множества.

28
Глава 1
Основы системного анализа
29


[pic]

Состояние j, z
"3
25
24 23
«5
«2

F t4 ts h '3 a
0 1 to

Рис. 1.З. Типичные примеры фазовых траекторий ДСДС(а)иДСНП(б)
Таким образом, траектория описывается последовательностью из двух чисел
(состояния и времени пребывания в нем). Следует подчеркнуть, что термин
«дискретный» отличается от широко используемого прилагательного «цифровой», поскольку последнее означает лишь то, что анализ задачи ведется не в терминах вещественной числовой переменной, а численными методами.
Траектория ДСНП, состояниями которой являются точки пространства R", постоянно изменяется и, вообще говоря, развивается на основе непрерывных входных воздействий. Здесь под состоянием понимается «математическое» состояние в том смысле, что оно включает в себя информацию к данному моменту времени (кроме внешних воздействий), которая необходима для однозначного определения дальнейшего поведения системы. Математическое определение включает в себя и физическое определение, но не наоборот.

Для перехода от детерминированной к стохастической системе достаточно в правые части соотношений (1.4) и (1.5) добавить в качестве аргументов функционалов случайную функцию p(t), принимающую значения на непрерывном или дискретном множестве действительных чисел.

Следует иметь в виду, что в отличие от математики для системного анализа, как и для кибернетики, характерен конструктивный подход к изучаемым объектам. Это требует обеспечения корректности задания системы, под которой понимается возможность фактического вычисления выходного сигнала y(t) (с той или иной степенью точности) для всех / > 0 при задании начального состояния системы z(0) и входного сигнала x(t) для всех it. Поэтому при изучении сложных систем приходится переходить к конечным аппроксимациям.

Системы с нетривиальным входным сигналом x(t), источником которого нельзя управлять (непосредственно наблюдать), или системы, в которых неоднозначность их реакции нельзя объяснить разницей в состояниях, называются открытыми.

Признаком, по которому можно определить открытую систему, служит наличие взаимодействия с внешней средой. Взаимодействие порождает проблему
«предсказуемости» значений выходных сигналов и, как следствие, - трудности описания открытых систем.

30

Глава 1

Примером трудностей описания является понятие «странный аттрактор» - специфическое свойство некоторых сложных систем. Простейший аттрактор, называемый математиками неподвижной точкой, представляет собой такой вид равновесия, который характерен для состояния устойчивых систем после кратковременного возмущения (состояние покоя емкости с водой после встряхивания). Второй вид аттрактора - предельный цикл маятника. Все разновидности предельного цикла предсказуемы. Третья разновидность называется странным аттрактором. Обнаружено много систем, имеющих встроенные в них источники нарушений, которые не могут быть заранее предсказаны (погода, место остановки шарика в рулетке). В экспериментах наблюдали за краном, из которого нерегулярно капали капли, хотя промежутки должны быть регулярными и предсказуемыми, так как вентиль зафиксирован и поток воды постоянен.

Математическим примером странного аттрактора является аттрактор Хенона - система уравнений, смоделированная в Lab VIEW (рис. 1.4, а, б).

Понятие открытости систем конкретизируется в каждой предметной области.
Например, в области информатики открытыми информационными системами называются программно-аппаратные комплексы, которым присущи следующие свойства:
8. переносимость (мобильность) - программное обеспечение

(ПО) может быть легко перенесено на различные аппаратные

платформы и в различные операционные среды;
9. стандартность - программное обеспечение соответствует

опубликованному стандарту независимо от конкретного разра

ботчика ПО;
10. наращиваемость возможностей - включение новых про

граммных и технических средств, не предусмотренных в перво

начальном варианте;
11. совместимость - возможность взаимодействовать с други

ми комплексами на основе развитых интерфейсов для обмена

данными с прикладными задачами в других системах.

Примером открытой среды является модель OSE (Open System Environment), предложенная комитетом IEEE POSIX. На основе этой модели Национальный институт стандартов и технологии США выпустил документ «Application
Portability Profile (APP). The U.S. Government's Open System Environment
Profile OSE/1

Windows Iext He'P
-0,2
Основы системного анализа

0,2 Состояние

рис. 1.4. Аттрактор Хенона: - программная модель; б - поведение в пространстве состояний
32
Глава 1
Основы системного анализа
33


Version 2.0», который определяет рекомендуемые спецификации в области информационных технологий, гарантирующие мобильность системного и прикладного программного обеспечения.

В отличие от открытых замкнутые (закрытые) системы изолированы от среды - не оставляют свободных входных компонентов ни у одного из своих элементов.
Все реакции замкнутой системы однозначно объясняются изменением ее состояний. Вектор входного сигнала x(t) в замкнутых системах имеет нулевое число компонентов и не может нести никакой информации. Замкнутые системы в строгом смысле слова не должны иметь не только входа, но и выхода. Однако даже в этом случае их можно интерпретировать как генераторы информации, рассматривая изменение их внутреннего состояния во времени. Примером физической замкнутой системы является локальная сеть для обработки конфиденциальной информации.

Основным противоречием, которое приходится разрешать в замкнутых системах, является проблема возрастания энтропии. Согласно второму закону термодинамики по мере движения замкнутой системы к состоянию равновесия она стремится к максимальной энтропии (дезорганизации), соответствующей минимальной информации. Открытые системы могут изменить это стремление к максимальной энтропии, получая внешнюю по отношению к системе свободную энергию, и этим поддерживают организацию. закон функционирования Fs, и в зависимости от целей моделирования входной сигнал x(t) может быть разделен на три подмножества:
13. неуправляемых входных сигналов xt е X, I = 1, ... , kx, пре

образуемых рассматриваемым элементом;
14. воздействий внешней среды «v e N, v = 1, ... , kn, представ

ляющих шум, помехи;
15. управляющих сигналов (событий) ит е U, т = 1 ku, появление которых приводит к переводу элемента из одного состояния в другое.

Иными словами, элемент - это неделимая наименьшая функциональная часть исследуемой системы, включающая < х, п, и, у, f^> и представляемая как
«черный ящик» (рис. 1.5). Функциональную модель элемента будем представлять как y(t) = Fs(x, п, и, t).

Входные сигналы, воздействия внешней среды и управляющие сигналы являются независимыми переменными. При строгом подходе изменение любой из независимых переменных влечет за собой изменение состояния элемента системы. Поэтому в дальнейшем будем обобщенно обозначать эти сигналы как x(t), a функциональную модель элемента - как y(t) = Fs(x(t)), если это не затрудняет анализ системы.

Выходной сигнал y(t), в свою очередь, представляют совокупностью характеристик элемента j>. e Y,j = l,...,k

1.2.4.

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ СИСТЕМНОГО АНАЛИЗА

Для оперирования основными понятиями системного анализа будем придерживаться следующих словесно-интуитивных или формальных определений.

Элемент - некоторый объект (материальный, энергетический, информационный), обладающий рядом важных свойств и реализующий в системе определенный закон функционирования F8, внутренняя структура которого не рассматривается.

Формальное описание элемента системы совпадает с описанием подмодели Ч* .
Однако функционалы g и / заменяются на
[pic]

Рис. 1.5. Элемент системы как «черный ящик»

3-20
34
Глава 1
Основы системного анализа
35

Под средой понимается множество объектов S 'вне данного элемента
(системы), которые оказывают влияние на элемент (систему) и сами находятся под воздействием элемента (системы),

Правильное разграничение исследуемого реального объекта и среды является необходимым этапом системного анализа. Часто в системном анализе выделяют понятие «суперсистема» - часть внешней среды, для которой исследуемая система является элементом.

Подсистема - часть системы, выделенная по определенному признаку, обладающая некоторой самостоятельностью и допускающая разложение на элементы в рамках данного рассмотрения.

Система может быть разделена на элементы не сразу, а последовательным расчленением на подсистемы - совокупности элементов. Такое расчленение, как правило, производится на основе определения независимой функции, выполняемой данной совокупностью элементов совместно для достижения некой частной цели, обеспечивающей достижение общей цели системы. Подсистема отличается от простой группы элементов, для которой не выполняется условие целостности.

Страницы: 1, 2, 3, 4, 5, 6, 7




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.