Меню
Поиск



рефераты скачать Электроснабжение текстильного комбината

Условия проверки выбранного предохранителя

1. Проверка на отключающую способность.

Ранее в пункте 10.3 был выбран автомат типа АВМ10Нс UНОМ = 0,38 кВ; IНОМ = 1000 А; IН откл = 20 кА.

Проверка на отключающую способность:



Выбранный автомат проходит по условию проверки.


11. Проверка КЛЭП на термическую стойкость


Согласно [3] выбранные ранее кабели необходимо проверить на термическую стойкость при КЗ в начале кабеля.

Проверять будем кабели, отходящие от ПГВ, так как для остальных КЛЭП не известны токи КЗ.

Проверка проводится по условию:



где с = 0,92 – термический коэффициент для кабелей с алюминиевыми однопроволочными жилами и бумажной изоляцией согласно [7], А×с2/мм2;

tотк – время отключения КЗ, с;

tа – постоянная времени апериодической составляющей тока КЗ, с;

F – сечение КЛЭП, мм2.

Рассмотрим расчет на примере КЛЭП ПГВ-ТП1


 кА


Увеличим сечение до 95 мм2, тогда


 кА > IКЗ = 9,213 кА,


что допустимо

Результаты проверки кабелей на термическую стойкость сведем в табл.18.

Таблица 18. Результаты проверки КЛЭП на термическую стойкость

Наименование КЛЭП

F, мм2

Iтер, кА

IКЗ, кА

ПГВ-ТП1

70

7,2

9,213

ПГВ-ТП2

35

3,6

9,213

ПГВ-ТП3

35

3,6

9,213

ПГВ-ТП4

35

3,6

9,213

ПГВ-ТП5

35

3,6

9,213

ПГВ-ТП6

16

1,6

9,213

ПГВ-ТП7

70

7,2

9,213

ПГВ-ТП8

50

5,14

9,213

ПГВ-ТП10

70

7,2

9,213

ПГВ-ТП11

50

5,14

9,213

ПГВ-ТП12

25

2,57

9,213

ПГВ-ТП13

95

9,77

9,213

ПГВ-РП

240

24,69

9,213

РП-ТП9

50

5,14

9,213

РП-ТП14

70

7,2

9,213

РП-ТП15

10

1,3

9,213


По режиму КЗ при напряжении выше 1 кВ не проверяются:

1.                 Проводники защищенные плавкими предохранителями не зависимо от их номинального тока и типа.

2.                 Проводники в цепях к индивидуальным электроприемникам, в том числе цеховым трансформаторам общей мощностью до 2,5 МВА и с высшим напряжением до 20 кВ, если соблюдены одновременно следующие условия:

– в электрической или технологической части предусмотрена необходимая степень резервирования, выполненного так, что отключение указанных электроприемников не вызывает расстройства технологического процесса;

– повреждение проводника при КЗ не может вызвать взрыва или пожара;

– возможна замена проводника без значительных затруднений.

3.                 Проводники к отдельным небольшим распределительным пунктам, если такие электроприемники и распределительные пункты являются не ответственными по своему назначению и если для них выполнено хотя бы только условие приведенное в пункте 2.2.

В остальных случаях сечение проводников надо увеличить до минимального сечения, удовлетворяющего условию термической стойкости.

Так как в нашем случае выполняются все выше изложенный условия в пунктах 1, 2 и 3 то сечение проводников увеличивать не будем.

Для проводников напряжением до 1 кВ приведенных в табл. 19 сечение увеличиваем до 95 мм2.


12. Расчет самозапуска электродвигателей


Самозапуск заключается в том, что при восстановлении электроснабжения после кратковременного нарушения электродвигатели восстанавливают свой нормальный режим работы. Отличительные особенности самозапуска по сравнению с обычным пуском:

– Одновременно пускается группа двигателей;

– В момент восстановления электроснабжения и начала самозапуска часть, или все электродвигатели вращаются с некоторой скоростью;

– Самозапуск обычно происходит под нагрузкой.

При кратковременном нарушении электроснабжения самозапуск допустим как для самих механизмов так и для электродвигателей.

Если невозможно обеспечить самозапуск двигателей, то в первую очередь необходимо обеспечить самозапуск для ответственных механизмов, отключение которых необходимо.

Расчет самозапуска синхронных двигателей:

В цехе № 15 установлены 6х500 СД. Из справочника выбираем двигатель марки СДН32-20-49-20 справочные данные последнего снесем в табл.19.


Таблица 19. Справочные данные СДН32-20-49-20

SН,

кВА

РН,

кВт

UН,

кВ

h,

%

jпот,

т×м2

n,

об/мин

cosj

540

500

6

94,3

5,5

0,9

2,1

1,1

1,038

315

0,91


1. Электромеханическая постоянная времени механизма и двигателя определяется:



где n0 – синхронное число оборотов в минуту.

РН – номинальная мощность двигателя, кВт.


 с


Выбор определяется по формуле



где tН – время нарушения электроснабжения, с.

mС – момент сопротивления механизма.



Цех питается от трансформатора ППЭ.

За базисную мощность принимаем мощность двигателя. Индуктивное сопротивление источника питания:


 


Расчетная пусковая мощность, индуктивное сопротивление двигателя и напряжения при самозапуске в начале самозапуска К' = 6.

  кВА

 

 


При скольжении 0,1; К' = 3


 кВА


Выходной момент при глухом подключении:


 


где DМ = 0,3 определено по номограмме [3].

Входной момент при глухом подключении недостаточен для обеспечения самозапуска. Проверим достаточность момента при разрядном сопротивлении. Критическое скольжение:


 

 

Так как это условие выполняется, двигатель дойдет до критического скольжения

Избыточный момент:

В начале самозапуска



При скольжении 0,05:



Время самозапуска


с


Дополнительный нагрев.


  оС


Из расчета следует, что самозапуск возможен как по условию необходимого избыточного момента, так и по условию допустимого дополнительного нагрева.

13. Расчет релейной защиты


Распределительные сети 6-220 кВ промышленных предприятий обычно имеют простую конфигурацию и выполняются, как правило, радиальными и магистральными. Силовые трансформаторы подстанций на стороне низшего напряжения обычно работают раздельно. Поэтому промышленные электросети и электроустановки для своей защиты от повреждения и аномальных режимов в большинстве случаев не требуют сложных устройств релейной защиты. В месте с тем, особенности технологических процессов и связанные с ними условия работы и электрические режимы электроприемников и распределительных сетей могут предъявлять повышенные требования к быстродействию, чувствительности и селективности устройств релейной защиты, к их взаимодействию с сетевой автоматикой: автоматическим выключением резервного питания (АВР, автоматическим повторным включением (АПВ), автоматической частотной разгрузкой (АЧР).

Исходными данными определено произвести расчет релейной защиты трансформаторов ПГВ. Согласно [3] для трансформаторов, устанавливаемых в сетях напряжением 6 кВ и выше, должны предусматриваться устройства релейной защиты от многофазных КЗ в обмотках и на выводах, однофазных КЗ в обмотке и на выводах, присоединенных к сети с глухозаземленной нейтралью, витковых замыканий в обмотках, токов в обмотках при внешних КЗ и перегрузках, понижений уровня масла в маслонаполненных трансформаторах и маслонаполненных вводах трансформаторов.


13.1 Защита от повреждений внутри кожуха и от понижений уровня масла


Тип защиты – газовая, реагирующая на образование газов, сопровождающих повреждение внутри кожуха трансформатора, в отсеке переключения отпаек устройства регулирования коэффициента трансформации (в отсеке РПН), а также действующая при чрезмерном понижении уровня масла. В качестве реле защиты в основном используется газовые реле. При наличии двух контактов газового реле защита действует в зависимости от интенсивности газообразования на сигнал или на отключение.

Типовыми схемами защиты предусматривается в соответствие с требованиями ПЭУ возможность перевода действия отключающего контакта газового реле (кроме реле отсека РПН) на сигнал и выполнение раздельной сигнализации от сигнального и отключающего контактов реле. Газовое реле отсека РПН должно действовать только на отключение.

При выполнении газовой защиты с действием на отключение принимаются меры для надежного отключения выключателей трансформатора при кратковременном замыкании соответствующего контакта газового реле.

Газовая защита установлена на трансформаторах ПГВ и на внутрицеховых трансформаторах мощностью 630 кВА и более. Применяем реле типа РГУЗ-66.

Защита от повреждений внутри кожуха трансформатора, сопровождающихся выделением газа, может быть выполнена и с помощью реле давления, а защита от понижения уровня масла – реле уровня в расширителе трансформатора.


13.2 Защита от повреждений на выводах и от внутренних повреждений трансформатора


Для этой цели будем использовать продольную дифференциальную токовую защиту, действующую без выдержки времени на отключение поврежденного трансформатора от неповрежденной части электрической системы с помощью выключателя. Данная защита осуществляется с применением реле тока, обладающих улучшенной отстройкой от бросков намагничивающего тока, переходных и установившихся токов небаланса. Согласно рекомендациям [3] будем использовать реле торможением типа ДЗТ-11. Рассматриваемая защита с реле ДЗТ-11 выполняется так, чтобы при внутренних повреждениях трансформатора торможение было минимальным или совсем отсутствовало. Поэтому тормозная обмотка реле обычно подключается к трансформаторам тока, установленных на стоне низшего напряжения трансформатора.

Произведем расчет продольной дифференциальной токовой защиты трансформаторов ПГВ, выполненной с реле типа ДЗТ-11. Для этого сначала определяем первичные токи для всех сторон защищаемого трансформатора, соответствующие его номинальной мощности:



где SНОМ – номинальная мощность защищаемого трансформатора, кВА.

UНОМ – номинальное напряжение соответствующей стороны, кВ.

Ток для высшей стороны напряжения:


 А


Для низшей стороны напряжения:



Принимаем трансформаторы тока с nТ ВН = 150/5 и nТ НН = 1500/5. Схемы соединения трансформаторов тока следующие: на высшей стороне D, а на низшей стороне – Y.

Определим соответствующие вторичные токи в плечах защиты:



где КСХ – коэффициент схемы включения реле защиты, которой согласно [3] для ВН равен , для НН-1.

Тогда с использованием выражения (11.2.2):


  А

  А


Выберем сторону, к трансформаторам тока которой целесообразно присоединить тормозную обмотку реле. В соответствии с [8] на трансформаторах с расщепленной обмоткой тормозная обмотка включается в сумму токов трансформаторов тока, установленных в цепи каждой из расщепленной обмоток. Первичный минимальный ток срабатывания защиты определяется из условия отстройки от броска тока намагничивания:



где Котс = 1,5 – коэффициент отстройки.


 А


Расчетный ток срабатывания реле, приведенный к стороне ВН:


 А


Расчетное число витков рабочей обмотки реле включается в плечо защиты со стороны ВН:



где FСР = 100 – магнитодвижущая сила срабатывания реле, А.



Согласно условию WВН £ WВН расч принимаем число витков WВН = 9, что соответствует минимальному току срабатывания защиты:


  А


Расчетное число витков рабочей обмотки реле, включаемых в плечо защиты со стороны НН:


 


Принимаем ближайшее к WНН расч целое число, т.е. WНН = 17.

Определим расчетное число витков тормозной обмотки, включаемых в плечо защиты со стороны НН:



где e = 0,1 – относительное значение полной погрешности трансформатора тока;

Du – относительная погрешность, обусловленная РНП, принимается равный половине суммарного диапазона регулирования напряжения;

α – угол наклона касательной к горизонтальной характеристике реле типа ДЗТ-11, tgα = 0,75.


Для ТРДН-25000-110 Du = 0,5×2×9×0,0178 = 0,16


Согласно стандартного ряда, приведенного в [3], принятое число витков тормозной обмотки для реле ДЗТ-11 WТ = 9.

Определим чувствительность защиты при металлическом КЗ в защищаемой зоне, когда торможение отсутствует. Для этого определим ток КЗ между двумя фазами на стороне НН трансформатора:


 кА

 кА = 462 А


Коэффициент чувствительности:

 ,


что удовлетворяет условиям

Определяем чувствительность защиты при КЗ в защищаемой зоне, когда имеется торможение.

Вторичный ток, подводимый к рабочей обмотке реле:


  А


Второй ток, подводимый к тормозной обмотке:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.