Продолжим анализ основополагающей
работы Крика и Ниренберга, постулирующей понятие генетического кода.
С.142 -143: “ ... до сих пор все
опытные данные хорошо согласовывались с общим предположением о том, что
информация считывается тройками оснований, начиная с одного конца гена. Однако,
мы получили бы те же результаты, если бы информация считывалась группами в
четыре или даже более оснований” или “...группами, содержащими кратное трем
число оснований”. Это положение почти забыто или не понято, но именно здесь
видно сомнение, обязательно ли код триплетный. И не менее важно, что
предугадано будущее понимание текстов ДНК и РНК как смысловых фрактальных
образований, родственных естественным языкам, что продемонстрировано в наших
исследованиях [25,26,29].
С.153: “ ... одна аминокислота
шифруется несколькими кодонами. Такой код называется вырожденным ... такого
рода вырождение не говорит о какой-то неопределенности в построении молекулы
белка ... оно лишь обозначает, что определенная аминокислота может быть
направлена в соответствующее место цепи молекулы белка с помощью нескольких
кодовых слов”.
Авторы видят, что синонимия еще не
нарушает однозначности кода.
С.153 -154: Но дальше следует
“...однако, все же имеется одна реальная возможность появления неопределенности
при синтезе белка. Эта неопределенность могла бы возникнуть, если бы одно
кодовое слово соответствовало нескольким аминокислотам. До настоящего времени
был отмечен только один случай такой неопределенности. Белок, син-тезируемый
поли-U, состоит не только из лейцина, но и из фенилаланина, причем на каждую
молекулу лейцина приходится 20-30 молекул фенилаланина. При отсутствии в растворе
фенилаланина поли-U использует лейцин в количестве, равном половине обычно
используемого количества фенилаланина. Молекулярное объяснение этой
неопределенности неизвестно”. Это первая и четкая констатация логического
несовершенства предлагаемой модели кодирования, ее противоречия фактам. Затем,
сомнения еще более усиливаются.
С.155: “некоторые кодовые слова почти
наверняка состоят из трех оснований. Однако, 18 из 20 аминокислот могут быть
закодированы словами, содержащими только два различных основания. Если же код
все-таки троичный, то возможно, что в некоторых случаях правильное кодирование
будет иметь место при условии, что из трех оснований считывается только два.
Возможно, что такое несовершенство случается более часто в синтетических
РНК-полимерах, содержащих одно или два основания, чем в естественных
РНК-посредниках, которые всегда состоят из смеси всех четырех оснований.
Поэтому результаты, полученные с помощью искусственных РНК, свидетельствуют
лишь о кодовых возможностях клетки...”
Явно просматривается неуверенность,
что код только триплетный, он может быть и дуплетным, и тетраплетным и даже
гетеромуль-типлетным. Нам же представляется, в развитии этих сомнений, что
кодовые возможности клетки, хромосом, ДНК не исчерпываются знаковыми тройками
нуклеотидов. Как речеподобные структуры, нуклеиновые кислоты в составе
хроматина способны к образованию in vivo метаязыков методом фрактализации, и
поэтому кодирование белкового континуума может проходить через крупные блоки,
шифрующие не только порядок включения отдельных аминокислот в пептид, но и
последовательность создания белковых доменов, субъединиц и даже
структурно-функциональных ансамблей ферментов, например, дыхательной цепи.
Фрактальность в данном случае может пониматься и так: ДНК, РНК и белки - это разноязыкие
тексты и то, что было в одном масштабе “фразой” или “предложением” в другом,
более крупном, будет “словом”. Если еще укрупнять - “слово” превращается в
“букву”. При более общем подходе можно рассматривать такие разномасштабные
смысловые построения как знаки (иероглифы), являющиеся субстратом своего рода
“информационного метаболизма” клеток. Такой путь образования метаязыков
свойствен математике. У нас нет оснований думать, что геном не пользуется этим
“математическим приемом” в полной мере, строя все новые усложняющиеся
семиотико-семантические ареалы с их постоянными переобозначениями на разных
уровнях организации биосистемы в процессе ее развития. При этом роль основной
массы синтезирующихся в организме белков заключается в реализации метаболических
конструкций, неявно закодированных в ДНК и имеющих квази-вербальную
составляющую. Биосистему можно рассматривать как совокупность таких
конструкций, и это находит определенное подтверждение в работах [25,26,29].
Такой ход рассуждений хорошо соответствует представлениям В.В.Налимова,
считающего все живое частью Семантической Вселенной [49]. Человек, в
соответствии с такой логикой, есть многообразие текстов, грамматику и семантику
которых мы хотим охватить единым, вероятностно задаваемым взглядом. В.В.Налимов
полагает, что личность является самочитаемым текстом - текстом, способным
самоизменять себя. Уменьшая масштаб рассмотрения человека как
самоорганизующейся системы и учитывая фрактальность (переходящую иногда в
голографичность) его хромосомного континуума, можно считать, что обратное
отображение человека в его собственный геном, как и отображения любого
организма в его хромосомы, носит изоморфный текстово-образный характер [25,29].
Предлагаемый способ рассуждений призван показать прием логического выхода из
ограничений первичной модели генетического кода, остановившейся в фазе слабого
понимания правил орфографии "записи" белковых “слов” из
аминокислотных "букв". Если же рассматривать идею фрактальности
смысловых (текстовых) конструкций генома и принять их божественное начало, то
подчеркнем, что эта идея восходит к VI в. и предложена Дионисием Ареопагитом в
его труде “О божественных именах”. Он говорит, что печать Божественности (читай
слова) лежит на каждом из нас, и “...оттиски Печати имеют много общего с ее
оригиналом: оригинал присутствует в каждом из отпечатков весь, и ни в одном из
них - лишь какой-то своей частью”. Частичность Печати определяется свойствами
воспринимающего материала - конкретной личности, т.е. потенциально в каждого
привносится все, идущее свыше, но расслышать, увидеть и понять это все целиком
не под силу никому.
Неспособность ранней концепции
генетического кода быть непротиворечивой, казалось, должна была побудить к
поиску новых идей. Вместо этого предпочтение было отдано анализу механизмов
точности белкового синтеза, но без главного мотива этой точности - механизмов
выбора однозначностей из кодирующих дуплетов-омонимов. Вот образец этих, в
данном аспекте бесполезных, описаний и рассуждений, но необходимых нам для
иллюстрации псевдологики в оценке главного в генокоде [20]: “ ... точность
белкового синтеза зависит от надежности двух адапторных механизмов: от
связывания каждой аминокислоты с соответствующей молекулой тРНК и от спаривания
кодонов в иРНК с антикодонами тРНК. Два механизма, действующие на этих этапах,
совершенно различны. У многих аминоацил-тРНК-синтетаз имеется два отдельных
активных центра: один ответственный за реакцию присоединения аминокислоты к
тРНК, и другой, распознающий “неправильную” аминокислоту и удаляющий ее путем
гидролиза. Точность спаривания кодона с антикодоном обеспечивается более тонким
механизмом “кинетической коррекции”. После того как молекулы тРНК присоединят
соответствующую аминокислоту, они образуют комплекс с особым белком, т.н.
фактором элонгации (ФЭ,EF), который прочно связывается с аминоацильным концом
молекулы тРНК и с молекулой GTP. Именно этот комплекс, а не свободная тРНК
спаривается с надлежащим кодоном в молекуле иРНК. Связанный таким образом ФЭ
обеспечивает возможность правильного спаривания антикодона с кодоном, но при
этом препятствует включению данной аминокислоты в растущий пептид. Начальное
узнавание кодона служит для ФЭ сигналом к гидролизу связанного с ним GTP до
GDP+P, после чего ФЭ отделяется от рибосомы без тРНК и синтез белка продолжается.
Благодаря ФЭ возникает короткий разрыв во времени между спариванием кодона с
антикодоном и элонгацией пептида, что позволяет тРНК отделиться от рибосомы.
“Неправильная” молекула тРНК образует в паре кодон - антикодон меньше
водородных связей, чем правильная; поэтому она слабее удерживается на рибосоме
и значит за данный промежуток времени имеет больше шансов отделиться”.
Комментируя эту, важную для нас,
длинную выдержку, можно сказать, что акцент в ней сделан на взаимном узнавании
тРНК и аминокислот через посредство аминоацил-тРНК-синтетаз. Механизм его не
ясен. Что касается точности узнавания кодоном антикодона, то она иллюзорна в
силу “воблирования” третьего нуклеотида, что уже обсуждалось. Представляется,
что выбор из дуплетных кодонов-омонимов реализуется по резонансно-волновым и
контекстным (ассоциативным, голографическим) и так называемым "фоновым
механизмам" (см. ниже). До сих пор они находились вне экспериментов и
рассуждений, но в настоящее время необходимость в этом очевидна. Омонимичность (неоднозначность)
кода может быть преодолена точно так же, как это происходит в естественных
языках ,- путем помещения омонима, как части, в целое, т.е. в законченную
фразу, контекст которой дешифрует омоним и присваивает ему единственное
значение, создавая однозначность. Поэтому иРНК в качестве своего рода “фразы”
или “предложения” должна работать в белковом синтезе как функциональное
кодирующее целое, задающее последовательность аминокислот на уровне ассоциатов
аминоацилированных тРНК, которые комплементарно взаимодействуют со всей
молекулой иРНК. При этом роль А,Р-участков рибосомы, если они реальны,
заключается в акцепции таких ассоциатов - предшественников белка с последующей
энзиматической сшивкой аминокислот в пептидную цепь. В этом случае будет происходить
контекстно-ориентированный однозначный подбор бывших омонимичных
дуплет-кодонов. Можно предсказать в связи с этим, что взаимодействие
аминоацилированных-тРНК с иРНК носит коллективный фазовый характер по типу
реассоциации (“отжига”) однотяжных ДНК при понижении температуры после
“плавления” нативного полинуклеотида. Существуют ли экспериментальные данные,
которые можно было бы трактовать в таком духе? Их немало и они сведены в
обзорно-аналитическом исследовании [52]. Приведем некоторые из них.
Известно, что правильность узнавания
молекулами тРНК терми-нирующих кодонов зависит от их контекстного окружения, в
частности, от наличия за стоповым кодоном уридина и, кроме того, в работе
убедительно показано следующее. Вставка строки из девяти редко используемых
CUA-лейциновых кодонов после 13-го в составе 313 кодонов тестируемой мРНК
сильно ингибируют их трансляцию без явного влияния на трансляцию других мРНК,
содержащих CUA-кодоны. Напротив, строка из девяти часто используемых
CUG-лейциновых кодонов в тех же позициях не имела выраженного эффекта на
трансляцию. При этом ни редко, ни часто используемые кодоны не влияли на этот
процесс, когда были введены после кодона 223 или 307. Дополнительные
эксперименты продемонстрировали, что сильный позиционный эффект редко
используемых кодонов не может быть объяснен различиями в стабильности иРНК или
в степени строгости выбора соответствующих тРНК. Позиционный эффект становится
понятным, считают авторы, если допустить, что транслируемые последовательности
менее стабильны вблизи начала считывания: замедленность трансляции реализуется
посредством малого использования кодонов, которые раньше следуют в сообщении, и
это приводит к распаду продуктов трансляции, раньше чем осуществится полная
трансляция. Как видим, для трактовки собственных экспериментов привлекаются
громоздкие допущения о распаде продуктов трансляции, допущений, никак не
следующих из их работы, и которые требуют специальных и тонких исследований. В
этом смысле наша идея контекстных ориентаций в управлении синтезом белков
проста, хотя экспериментально доказать ее непросто. Цитируемая работа хорошо
высвечивает стратегическую линию влияния строго определенных и далеко
расположенных от места образования пептидной связи кодоновых вставок в иРНК на
включение или невключение конкретной аминокислоты в состав синтезируемого
белка. Это именно дистантное влияние, но в цитируемой работе оно просто
констатируется, оставаясь для исследователей непонятным и, видимо, поэтому даже
не обсуждается. Таких работ становится все больше. В той, что мы обсуждаем,
ссылаются, к примеру, на полдюжины аналогичных результатов, где трактовка в
этом смысле также затруднена. Причиной этому является несовершенство
общепринятой модели генетического кода. Это верно и потому, что имеются данные
о существовании так называемого протяженного (swollen) антикодона [52]: во
взаимодействии тРНК с иРНК в А-сайте рибосомы участвуют не три, а большее
количество пар оснований. Это означает, что принятый пов-семестно постулат
триплетности кода нарушается и здесь. Там же, в [52], приводятся результаты
работы по взаимодействию тРНК-тРНК на рибосоме, и это соответствует нашей идее
об ассоциате аминоацилированных тРНК как предшественнике белка. В [52]
высказана мысль, что эффект действия контекста иРНК на однозначное включение
аминокислот в пептид является отражением неких фундаментальных и пока плохо
изученных закономерностей декодирования генетической информации в процессе
белкового синтеза. В работе Ульфа Лагерквиста [11] “wobble”- гипотеза Крика
получила расширенную трактовку и крайнее выражение, согласно которому нуклеотид
в третьем положении кодона иРНК является лишним, бессмысленным, избыточным, его
присутствие игнорируется, и поэтому чтение антикодоном кодона производится по
правилу “два из трех”. Отсюда логично следует массированная неоднозначность
прочтения иРНК и некорректность трансляции белковых молекул, что противоречит
экспериментам, и это констатируется в [52], равно как и в других исследованиях.
Вместе с тем, отмечается, что существует определенный уровень неоднозначности
трансляции иРНК в клетке, но он слабо поддается осмыслению. Помимо ошибочной
трансляции значащих кодонов и считывания стоп-кодонов как аминокислотных, в
процессе белкового синтеза могут происходить многочисленные нормальные и редко
ошибочные сдвиги и перекрытия рамок трансляции. Ошибки возникают в результате
считывания дуплетов или квадриплетов оснований как кодонов. Механизмы сдвигов
рамки считывания практически не изучены. Во многих работах показано, что
ошибочная трансляции белков рибосомой вызывается разнообразными
неблагоприятными факторами - антибиотиками, изменением температуры, созданием
определенных концентраций катионов, аминокислотным голоданием и другими
условиями внешней среды. Повышенная неоднозначность трансляции кодонов, локализованных
в особом контексте, имеет биологическое значение и приводит к неслучайному
распределению “ошибочных” аминокислот по длине синтезируемого полипептида,
приводящему к модификациям функций белков с выходом на механизмы клеточных
дифференцировок, и поэтому контексты иРНК являются субстратом естественного
отбора. Оптимальный уровень “ошибок” трансляции (если это действительно ошибки)
регулируется неизвестными механизмами, и он онтогенетически и эволюционно
оправдан [52]. Этому соответствуют и наши экспериментально-теоретические данные
[8-18] о волновых знаковых взаимодействиях в водно-жидкокристаллической среде
клетки, в которые вовлечен белок-синтезирующий аппарат. Нами обнаружены
резонансные частоты, общие для ДНК, рибосом и коллагена, и имеющие, вероятно,
биознаковую природу, а также открыта способность хромосом и ДНК быть
лазеро-активной средой [18].
Вернемся вновь к общепринятым
поначалу основным положениям генетического кода: он является триплетным,
неперекрывающимся, вырожденным, не имеет “запятых”, т.е. кодоны ничем не
отделены друг от друга. И наконец, он универсален. Что осталось от этих
положений? Фактически ничего. В самом деле, код, видимо, является двух-, трех-,
четырех-, ... n-буквенным как фрактальное и гетеромультиплетное образование. Он
перекрывающийся. Он имеет запятые, поскольку гетерокодоны могут быть отделены
друг от друга последовательностями с иными функциями, в том числе с функциями
пунктуации. Код не универсален - в митохондриях он приобретает специфические
черты. Как понимать генетический код с учетом приведенных противоречий и
предлагаемой нами логики рассуждений?
Для снятия этих противоречий можно
постулировать качественную, упрощенную, первичную версию вещественно-волнового
контроля за порядком выстраивания аминокислот в ассоциате аминоацилированных
тРНК как предшественнике белка. С этой позиции легче понять работу
генетического, а точнее белкового, кода как одной из множества иерар-хических
программ вещественно-волновой самоорганизации биосистемы. В этом смысле такой
код - первый этап хромосомных планов построения биосистемы, поскольку язык
генома многомерен, плюралистичен и не исчерпывается задачей синтеза протеинов.
Более детальное, физико-математически формализованное и экспериментально
подтверждаемое, изложение новой версии работы белок-синтезирующего аппарата
разра-батывается нами в настоящее время, хотя надо признать, что это задача
xxI-xxII веков.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
|