2.3 Расчёт
теплофизических характеристик cмеси газов
В теплотехнике обычно приходится встречаться не
с отдельными газами, а со смесями газов. Такие смеси часто получаются как
продукт процесса горения, представляющий собой химический процесс соединения
горючих элементов топлива (С, Н, S) с кислородом воздуха. Продукты полного
сгорания топлива состоят из СО2, SO2, Н2О, О2,N2.
При неполном сгорании в состав продуктов сгорания входят такие газы, как СО, СН4,
Н2,С2Н2 и т. д. Смесь продуктов неполного
сгорания топлива представляет собой газовую смесь, способную к дальнейшему
сгоранию, и поэтому её применяют как горючий газ в печах, топках или камерах
сгорания различных тепловых установок.
При рассмотрении газовых смесей исходят из того,
что смесь идеальных газов, не вступающих в химическое взаимодействие друг с
другом, также является идеальным газом и подчиняется всем законам, относящимся
к идеальным газам. При этом каждый газ, входящий в состав газовой смеси, ведёт
себя так, как будто он один при данной температуре занимает весь объём смеси.
Давление, которое при этом оказывает каждый компонент смеси на стенки сосуда,
называется парциальным давлением, а давление газовой смеси складывается
из парциальных давлений газов, образующих газовую смесь. Это положение составляет
содержание закона Дальтона для газовых смесей, который Дальтон установил
опытным путём в 1807 г.
Математически этот закон записывается следующим
образом:
, (2.14)
где
рсм - давление смеси газов;
рi - парциальное
давление i - го компонента, входящего в состав смеси;
n
- число компонентов, образующих смесь.
Цель
расчёта газовой смеси состоит обычно в определении молекулярной массы, газовой
постоянной плотности удельного объёма и парциальных давлений компонентов,
образующих смесь. Состав газовой смеси может быть задан двояко: массовыми или
объёмными долями.
В
первом случае, если обозначить массу смеси Gсм, а массу какого-то i
- го компонента Gi, то отношение Gi к Gсм и
определит массовую долю этого i - го компонента, обозначаемую через gi,
т. е.
, и
.
Во
втором случае объём смеси и объём каждого компонента, входящего в смесь,
одинаковы и по отдельности равны по объёму того сосуда, в котором помещена
смесь газов. При этом температура смеси и температура каждого компонента также
одинаковы, а давление разные, ибо каждый из компонентов находится под своим
парциальным давлением, а вся смесь под давлением, равным сумме этих парциальных
давлений. Для того, чтобы сравнить количество газов, входящих в смесь, по
объёму, нужно объёмы компонентов привести к одинаковому давлению, в качестве
которого выбирают обычно давление смеси. Объёмы компонентов, приведенные к
давлению смеси, называются парциальными объёмами. Если объём смеси
обозначить Vсм, а парциальный объём i - го компонента - Vi,
то объёмную долю i - го компонента можно найти как отношение его парциального
объёма к объёму смеси, т. е. ( где ri - объёмная доля i - го
компонента). Чтобы найти
,
нужно
определить, чему равна сумма парциальных объёмов . Поскольку температура смеси и всех компонентов
одинакова, напишем уравнение Бойля - Мариотта для i - го компонента при двух
состояниях: когда он занимает объём смеси и находится под парциальным давлением
и когда он занимает парциальный объём и находится под давлением смеси, т. е.
. (2.15)
Если
уравнения (1 - 14) написать для каждого компонента, входящего в состав газовой
смеси, и просуммировать эти уравнения, будем иметь
.
Помня,
что по уравнению (1 - 13) , получим
. Следовательно,
.
Для
упрощения расчётов, связанных с газовыми смесями, условно заменяют смесь
собранием однородных средних молекул, которые по своему числу и суммарной массе
могли бы заменить действительную газовую смесь. Это упрощение даёт возможность
подойти к рассмотрению газовой смеси как к однородному газу.
Введём
понятие киломоля газовой смеси mсм и определим
его значение через массовые и объёмные доли компонентов. Обозначим kсм - число
киломолей газовой смеси; ki - число
киломолей i - го компонента, входящего в состав смеси. Число молей смеси kсм определим
как сумму чисел киломолей компонентов смеси, т. е.
, тогда
или
(2.16)
Для
вычисления mсм через
объёмные доли поступим так: пусть для простоты Vсм = 1 м3,
тогда
; Gсм = rсмVсм
= rсм; но
, а Gi = riVi
= riri,
следовательно,
(2.17)
Эта
формула, полученная как промежуточная в наших рассуждениях может служить для
определения плотности смеси через объёмные доли. Так как
,
а по закону Авогадро (mu)i
= (mu)см
= idem, то
и окончательно
(2.18)
Газовая
постоянная смеси газов Rсм определяется из соотношения
(2.19) или
откуда
(2.20)
Плотность
через массовые доли может быть определена по равенству
и
(2.21)
Удельный
объём смеси uсм
определяется как величина, обратная rсм.
Парциальные
давления компонентов рi через объёмные доли легко определить из
уравнения (1 - 14):
рiVсм
= рсмVi; . Таким образом
рi=
ri рсм (2.22)
Через
массовые доли рi выражается следующим образом. Напишем уравнение
состояния газа для смеси и для i - го компонента:
Разделив
второе равенство на первое, получим
, откуда
(2.23)
При
расчёте газовых смесей часто встречается необходимость определить состав смеси
по объёмным долям по известному массовому составу и наоборот. Установим
соответствующие формулы перехода:
, но
тогда
; (2.24)
или
(2.25)
Состав
атмосферы в рабочем пространстве топок (продуктов сгорания) определяется, как
правило, через объёмные доли. В этом случае теплофизические характеристики
смеси газов рассчитываются аналогично расчёту rсм - формула
2.17
;
;
и т. д.
2.4 Теплообмен
при фазовых превращениях
Теплообмен с фазовыми превращениями - кипение
Фазовый переход
Ps - давление насыщенного пара
ts - температура насыщения
P=Cte -парообразование при постоянных
р и Т
Lv - скрытая теплота парообразования
образование пузырьков
d - поверхностное натяжение, r - радиус кривизны
Dр»DТ (перегрев)
если
г ® 0, Dр ® ¥ (пузырьки зарождаются всегда
на поверхности)
поверхность
нагрева и ее свойства играют важнейшую роль в парообразовании (пузырьки
формируются преимущественно на шероховатой поверхности, которая образует
микропузырьки ®
"активные центры парообразования" или "зародыши")
форма
и размеры пузырьков варьируются в зависимости от смачивания
кипение
в непроточной воде или "в сосуде" (объемное):
Изменение
температуры происходит в пограничном слое на стенке. Механизм и различные
режимы кипения зависят главным образом от этой разницы температур.
Режимы
кипения:
Вода
с давлением 0,1 Мра
зона
1: свободная конвекция (еще нет возникновения пузырьков, т.к. ТН>Тw).
зона
2: пузырьковое кипение ( пузырьки поднимаются вверх и вызывают есте-
ственную циркуляцию)
зона
3: переходное кипение
зона
нестабильности (только при данной ТН)
зона
4: пленочное кипение, продолжается образование пара пленки (изоляция), которое
сопровождается передачей тепла
Критическая
точка кипения с: нагрев при известном потоке затруднен из-за пленки пара,
поэтому температура Тw резко возрастает (® плавление)
Теплообмен: ® в общем случае расчётные
формулы очень громоздки (большое количество параметров)
аппроксимация
по Фритцу:
для
воды (р = 0,01 … 15Мра) в
зоне
пузырькового кипения
Теплообмен при фазовых превращениях -
конденсация
Вид конденсации:
®
зависит существенно от взаимодействия “жидкость - стенка”
Плёночная конденсация (жидкость смачивает
поверхность): a=8000..12000 Вт/(м2К) значения для
водяного пара
Капельная конденсация (жидкость не смачивает
поверхность): a=30000..40000 Вт/(м2К)
Плёночная конденсация на
вертикальной стенке:
®
Теория Нуссельта (опубликована в 1916)
Фундаментальная гипотеза:
стационарный режим
насыщенный пар (с температурой ТН) в
состоянии покоя
ТW - постоянна
стекание плёнки конденсата вниз в ламинарном
режиме (под действием силы тяжести)
теплообмен осуществляется теплопередачей сквозь
достаточно тонкую плёнку, поэтому градиент температуры через плёнку остаётся
постоянным.
скрытая
теплота парообразования бесконечно мала, если Рнас << Ркрит
L
- высота охлаждаемой поверхности (для горизонтальной трубы используют L = 2,5d
rL - плотность
жидкости
l -
коэффициент теплопроводности
n -
кинематическая вязкость
- средняя скорость в плёнке
- гидравлический диаметр =
4b (b: толщина плёнки)
- смачиваемый периметр
- массовый расход конденсата
на единицу длины для водяного пара и ТН:
3. ТЕПЛООБМЕН
ИЗЛУЧЕНИЕМ И СЛОЖНЫЙ ТЕПЛООБМЕН
3.1 Радиационные
свойства газов
Излучение газов существенно отличается от
излучения, испущенного твердых тел. В то время как монохроматическая плотность
потока излучения для твердого вещества практически изменяется во всем спектре,
испускание и поглощение излучения в газах происходят в узких полосах длин волн.
Вид спектра поглощения водяного пара типичен и
для других газов. Испускание и поглощение в очень узких полосах длин волн
значительны, но в соседних смежных полосах они могут падать до нуля. Газы с
симметричным строением молекул, такие, как O2, N2 и Н2,
не относятся к сильно поглощающим или излучающим. В большинстве случаев при
температуре, меньшей температуры ионизации этих газов, излучением газов с
симметричным строением молекул можно пренебречь. С другой стороны, излучение и
поглощение газов с несимметричной структурой молекул могут быть значительными.
Наиболее важными для техники газами с несимметричной структурой являются Н20,
CO2, CO, SO3, NH3 и углеводороды. Ограничимся
рассмотрением свойств двух из них: Н20 и СО2.
Еще одно важное различие между радиационными
свойствами непрозрачных твердых тел и газов состоит в том, что форма газового
объема влияет на его свойства, тогда как свойства непрозрачного твердого тела
не зависят от его формы. Толстые слои газа поглощают больше излучения, чем
тонкие, и пропускают меньше излучения, чем тонкие. Поэтому кроме общепринятых
свойств, определяющих состояние газа, таких, как температура и давление,
необходимо еще указать характерный размер массы газа, прежде чем определять его
радиационные свойства. Характерный размер в газе называется средней длиной
пути луча. Средние длины пути луча в объемах газа различных простых
геометрических форм даны в таблице 3.1.
Таблица 3.1 - Средняя длина пути луча в
объемах газа различных геометрических форм
Форма
объема газа
|
L
|
Сфера
Бесконечный цилиндр Бесконечные параллельные пластины
|
2/3 диаметра
Диаметр Два расстояния между пластинами
|
Полубесконечный
цилиндр, излучающий на центр основания
|
Диаметр
|
Прямой
круговой цилиндр с высотой, равной диаметру излучающий на центр основания
излучающий на всю поверхность Бесконечный цилиндр полукруглого поперечного
сечения, излучающий на точку в середине плоской стороны
|
Диаметр
2/3 диаметра Радиус
|
Прямоугольные
параллелепипеды куб 1:1:4, излучающий на грань 1 X 4 излучающий на грань 1 X
1 излучающий на все грани
|
2/3 стороны 0,9
меньшего ребра 0,86 меньшего ребра 0,891 меньшего ребра
|
Пространство
вне пучка бесконечных труб с центрами в вершинах равностороннего треугольника
диаметр трубы равен промежутку между трубами диаметр трубы равен 1/2
промежутка между трубами
|
3,4
промежутка 4,44 промежутка
|
Для других геометрических форм, не перечисленных
в таблице, средняя длина пути луча в газе может быть приближенно определена по
формуле
(3.1)
где
V-объем газа, S-площадь поверхности газа.
В
работах Хоттеля измерены зависимости излучательной способности ряда газов от
температуры, полного давления и средней длины пути луча. Кривые для
излучательных способностей паров Н2О и CO2 показаны на
рисунке 3.1 и 3.2. На этих двух графиках и - парциальные давления газов. Полное
давление для обоих случаев 0,10133 МН/м2 (1атм). В случае когда
полное давление газа не равно 0,10133 МН/м2, значения и с рисунков 3.1 и 3.2 должны
быть умножены на поправочные коэффициенты. Поправочные коэффициенты и представлены
на рисунках 3.3 и 3.4.
Рисунок
3.1 Излучательная способность водяного пара при полном давлении 0,10133 МН/м2
(1 атм).
Излучательные
способности Н2О и СО2 при полном давлении РТ,
отличном от 0,10133 МН/м2 (1 атм), определяются выражениями
В
случае, когда оба газа, Н2О и СО2, образуют смесь,
излучательную способность смеси можно рассчитать как сумму излучательных
способностей газов, определенных при допущении, что каждый газ существует
отдельно, за вычетом коэффициента De,
который учитывает излучение в перекрывающихся спектральных полосах. Коэффициент
De для Н2О
и СО2, представлен на рисунке 3.5. Излучательная способность смеси Н2О
и СО2 поэтому определяется выражением
eсм = + - De (3.2)
Рисунок
3.2 Излучательная способность углекислого газа при полном давлении 0,10133 МН/м2
(1 атм).
Рисунок
3.3 Поправочный коэффициент для излучательной способности водяного пара при
давлениях, отличных от 0,10133 МН/м (1 атм)
Рисунок
3.4. Поправочный коэффициент для излучательной способности СО2 при
давлениях, отличных от 0,10133 МН/м (1 атм)
Рисунок
3.5 Поправочный коэффициент De
для излучательной способности смеси водяного пара и СО2.
Пример
3.1. Определить излучательную способность газовой смеси, состоящей из N2,
Н2О и СО2 при температуре 800 К и имеющей форму сферы
диаметром 0,4 м. Парциальные давления газов = 0,1 МН/м2, = 0,04 МН/м2, =0,06 МН/м2.
Решение.
Из таблицы 3.1 определяем значение средней длины пути луча для сферы
L=(2/3)D=0,27
м
(по
формуле (3.1) L = 0,24 м). Значения параметров, используемых на рисунках
(3.1) и (3.2), равны
T
= 800К, L =
0,0104
(МН/м2)м, L = 0,0156
(МН/м2)м.
Излучательные
способности для полного давления 0,1 МН/м2 равны
= 0,15, = 0,125.
Считаем,
что N2 при 800 К существенно не излучает. Поскольку полное давление
газа 0,2 МН/м2, необходимо ввести поправку в значения в рассчитанные
для 0,1 МН/м2. Величины и берём с графиков (рисунок 3.3 и 3.4)
= 1,62, = 1,12.
Наконец,
с помощью рисунка 3.5 определяем величину De,
используемую для учета излучения в перекрывающихся полосах спектра:
De = 0,005.
Излучательная способность смеси определяется по
формуле (3.2):
eсм = 1,62 • 0,15 +
1,12 • 0,125 - 0,005 = 0,378.
Определение
поглощательной способности газа несколько сложнее по сравнению с определением e. Используются графики для
излучательной способности, описанные выше, однако параметры графиков должны
быть модифицированы. Например, рассмотрим водяной пар при температуре , на который падает излучение
с поверхности, имеющей температуру Тs. Поглощательную способность Н2О
можно приближенно рассчитать по уравнению
, (3.3)
в
котором величина берется с рисунка 3.3, а - значение
излучательной способности водяного пара с рисунка 3.1, определенное при
температуре Тs, и при произведении давления на среднюю длину пути
луча, равном
.
Значение
поглощательной способности СО2 определяется аналогично по уравнению
(3.4)
где
величина берется с
рисунка 3.4, а величина ,
определяется по рисунку 3.2 при . Для смеси Н2О и СО2
поглощательная способность равна
,
где
и определяются по уравнениям
(3.3) и (3.4) соответственно, а Da
= De оценивается
по рисунку 3.5 при температуре Ts.
Пример
3.2. Определить поглощательную способность смеси О2 и водяного пара
с полным давлением 0,2 МН/м2 и температурой 400 К. Средняя длина
пути луча для газов 1,5 м, а падающее излучение испускается поверхностью с
температурой 800 К. Парциальное давление Н2О составляет 0,02 МН/м2.
Решение.
Считаем, что кислород не поглощает заметного количества падающего излучения и
поглощательная способность смеси равна поглощательной способности водяного
пара. Поглощательная способность Н2О определяется уравнением (3.3):
Параметры,
используемые для определения и следующие:
(МН/м2)м,
= 0,11 (МН/м2)м,
= 0,06 (МН/м2)м.
По
графику с рисунка 3.3 находим
= 1,45,
а
по графику с рисунка 3.1 находим
= 0,33.
Поглощательная
способность водяного пара, следовательно, равна
Инженерная
формула для расчёта теплообмена между излучающим газом и теплообменной
поверхностью имеет вид:
(3.5)
где - излучающая способность
стенки в присутствии поглощающей среды.
Для
замкнутой системы
(3.6)
поглощающей среды:
- по справочнику;
- излучательная способность
газа при температуре газа;
- излучательная способность
газа при температуре стенки.
3.2 Сложный
теплообмен
Для упрощения инженерных расчётов приведём форму
закона 4-й степени к форме закона Ньютона:
(3.7)
тогда
=, где
3.3
Указания к выполнению курсовой работы
В случае теплопередачи через некоторый
теплообменный элемент, представляющий из себя многослойную стенку, приходится
решать задачу в следующей постановке (рисунок 3.6).
t
Рабочее про- 1 2 і n-1 n Охлаждаемый
странство канал
δ1
δ2
γ0
γn
Рисунок 3.6. - Схема элемента теплообменной
поверхности
(3.8)
где
di - толщина i
- го слоя;
li -
коэффициент теплопроводности i - го слоя;
tг,
tн
- температура газа в рабочем пространстве и температура насыщения
соответственно;
a п -
коэффициент теплоотдачи к пароводяной смеси;
qконв,
qизл
- конвективная и лучистая составляющая тепловой нагрузки на теплообменную
поверхность.
Решение
системы уравнений (3.8), нелинейной из-за зависимости li = l i(t) и
присутствия в граничных условиях лучистой составляющей qизл, требует
организации итерационного процесса. Это связано с тем, что от параметров
искомого поля температур зависят теплофизические характеристики и интенсивность
лучистого теплообмена (~ Т4г). Многократное
использование одного алгоритма для нахождения решения (итерационный процесс)
удобно осуществлять с помощью ЭВМ. Рассмотрим более подробно алгоритмы расчёта
характеристик испарительного охлаждения рассматриваемого элемента теплообменной
поверхности.
Из
решения системы уравнений (3.8) можно определить тепловой поток, проходящий
через многослойную стенку
(3.9)
- коэффициент радиационно -
конвективного теплообмена.
Для
удобства представления принято
(3.10)
Выражение,
определяющее плотность лучистого теплового потока, приведено к форме Ньютона -
Рихмана
(3.11)
Таким
образом, для расчёта по формуле (3.9) необходимо
рассчитать коэффициенты переноса из рабочего пространства, через теплообменную
систему и к охлаждающему тракту.
Определение
коэффициентов переноса
А.
Теплообмен из объёма печи (газовая сторона).
Перенос
энергии от горячих газов к теплообменной поверхности балки осуществляется как
конвекцией, так и излучением. Суммарный коэффициент теплоотдачи представлен в
виде
- коэффициент конвективного
теплообмена;
- приведенный коэффициент
теплообмена излучением.
Для
выбора критериального уравнения (гл. 2) необходимо рассчитать критерии
- критерий Прандтля;
- коэффициент кинематической
вязкости;
- коэффициент
температуропроводности газов;
- критерий Рейнольдса;
- критерий Нусельта;
- при температуре стенки или
(3.12)
Таким
образом, для определения нужны следующие
характеристики смеси газов , , , расчёт см. раздел 2.3. , , , - выбираем по справочникам
[2], [3].
Коэффициент температуропроводности определим по
формуле:
Определение
приведенного коэффициента теплообмена излучением см. 3.1. Б. Теплообмен со
стороны охлаждающей воды см. раздел 2.4.
Порядок
расчёта
Коэффициенты
переноса являются функцией неизвестных параметров температуры стенки и удельной
плотности теплового потока. Поскольку в этом случае получение аналитического
решения затруднительно, воспользуемся методом последовательных приближений для
нахождения инженерного решения:
задаёмся
в первом приближении;
по
заданному материалу балки, рабочей температуре и составу накипи выбираем [3, 5];
рассчитываем
коэффициенты теплообмена ; (гл. 1, 2, 3);
по
известным термическим сопротивлениям теплопередачи рассчитываем и получаем во втором приближении
(гл.1);
проверка
окончания итерационного процесса.
если
условие не выполняется, повторяем расчёт, начиная с выбора ;
после окончания итерационного процесса
рассчитываем выход насыщенного пара;
проверка на устойчивость [3], [5], [6].
РЕКОМЕНДУЕМАЯ
ЛИТЕРАТУРА
1. Вукалович М. П. Термодинамические
свойства газов. - М.: Машгиз; 1959. - 457 С.
2. Кутателадзе С. С.,
Боришанский В. М. Справочник по теплопередаче. - М.: Гостехиздат, 1959.- 414 С.
3. Казанцев Е. И. Промышленные
печи. - М.: Металлургия, 1975.- 368 С.
4. Миснар В. Д.
Теплопроводность твёрдых тел, газов и жидкостей. - М.: Наука, 1973. - 445 С.
5. Исаченко В. П.
Теплопередача. - М.: Энергия, 1969. - 439 С.
6. Ривкин С. Л., Александров
А.А. Теплофизические свойства воды и водяного пара. - М.: Энергия, 1980. - 80
С.
7. Крейт Ф., Блэк У. Основы
теплопередачи. - М.: Мир, 1983. - 511С.
Страницы: 1, 2, 3
|